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TWO EXTENSIONS OF THE SHAPLEY VALUE FOR COOPERATIVE
GAMES

T.S.H. DRIESSEN AND D. PAULUSMA

ABSTRACT. Two extensions of the Shapley value are given. First we consider

a probabilistic framework in which certain consistent allocation rules such as
the Shapley value are characterized. The second generalization of the Shapley
value is an extension to the structure of posets by means of a recursive form. In
the latter setting, the Shapley value for quasi-concave games is shown to be a
core-allocation.

1. INTRODUCTION

Consider the problem of allocating some overall costs among a number of agents
who have undertaken a joint venture. This allocation problem may be solved in a

variety of ways, but an allocation rule that prescribes somehow a solution for the

allocation problem should be justifiable on the basis of generally accepted princi-

ples. A well-known solution of cooperative games is the Shapley vafu&hap-

ley [1953], Roth [1988]).

A cooperative games described by a pairN, c), whereN is a finite set oh > 2
players andt : 2N — R is acost functiorsatisfyingc(%) = 0.

As mentioned above, a central problem in cooperative game theory is to find a
'fair’ allocation of the total cost&(N) to the players. A vectox € RN is acost
allocationif x is efficient i.e., x(N) = ¢(N). (Throughout the paper, for anye
RN andSc N, we use the shorthand notatigS) = in )

ieS
An allocation ruleyr prescribes for each cooperatingperson gameéN, c¢) exactly
one allocation. Th&hapley valuef a game(N, ¢) is defined as

L1 ¢i(N.o=) (S = Din— 9" <C(S) —C(S\i)) foralli € N.

n!
Ssi

In this note, we also a (partial) order on the set of players (s€g,Bilbao and
Edelman [1996], Faigle and Kern [1992], [1997]). Denote théstial order by
P = (N, <). Then a cooperative game is described by a @Rjrc). Furthermore,
we slightly generalize the model by assumatg be given for a subfamill. (P) C
2N of permittedcoalitions containing thgrand coalition N
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2 T.S.H. DRIESSEN AND D. PAULUSMA

Besides the subfamill (P) = 2N, we consider examples of subfamiliegP) (cf.
Faigle and Kern [1992]) such as

(L.2) L(P)= {SC N|if je Stheni € Sforalli < j};
(1.3) L(P)= {SC N|ifi, je Sthenk e Sforalli <k =< j}.

The paper is organized as follows. In Section 2, the characterization of the Shapley
value by Evans [1996] is generalized. Evans [1996] has proposed a specifically
chosen probabilistic framework based on a certain “uniform” probability distribu-
tion. In this framework, the Shapley value has been characterized as the unique
consistent allocation, where consistency refers to a particular property described
in this section. We generalize Evans’ result in that the existence and uniqueness
of the consistent solution is established within a similar, but less restrictive proba-
bilistic framework. Furthermore, we consider the case in which the set of players is
(partially) ordered. However, it turns out that only subfamilie&P) that contain

also the complement of permitted coalitions can be considered. Hence the results
do not hold for subfamilied (P) such as (1.2) and (1.3). Therefore, in Section

3, we propose another generalization of the Shapley value by an extension of the
recursive formula for the Shapley value introduced by Sprumont [1990]. We show
that this generalized Shapley value is a core-allocation for quasi-concave games.

2. THE UNIFIED PROBABILISTIC MODEL AND CONSISTENTALLOCATIONS

The solution approach taken here is that the solution of the game is to be deter-
mined endogenously as the expected outcome of a probabilistic reduction of the
cooperativen-person game to various induced two-person games. For that purpose
the player seN is to be partitioned into two complementary coalitidhand N\ S,

and from each of these two coalitions a leader (“representative”) has to be cho-
sen to cope with the bilateral division problem how to divide the total cogtb),

taking into account the cost'S) andc(N\S) of the two coalitions involved. It

is supposed that any bilateral division problem is solved by applying the so-called
standard solution in that the surploéN) — c(S) — ¢(N\'S) is charged equally to

both leaders of the two coalitions, in addition to their initial costs. That is, the
leader of coalitionSis charged the amount a{S) + %[c(N) —c(S) —c(N\9)]

and subsequently, this leadds obliged to charge all other agentsj € S\{i}, of

his coalition the amount; in accordance with the prespecified cost veatarRN,

and the remaining costs are allocated to the leader himself.

Since the model supposes that players split randomly into two coalitions, each
with a randomly chosen leader, IptS, N\'S) > 0 denote the probability of the
formation of the ordered partitio(S, N\ S) and p> > 0 the probability that player

i will be leader of coalitionS, whereSC N, S# @, andi € S. In this probabilistic
framework, the expected cost allocation to playierthe cooperative gameN, c)

with reference to the cost vectaiis determined by the next expression:



EXTENSIONS OF THE SHAPLEY VALUE 3

Svy. | S
@1) Y208 M| A= -+ B )

Si

C(N)+c(S —c(N\S) X(S\i))].

The factor 2 arises in (2.1) because it is supposed that the ordered pari&jdwsS)
and (N\'S, S) being equally likely, that ip(S, N\S) = p(N\S, S) for all SC N,
S# (. Since the probabilistic model involves a probability distributj@aS, N\ S) |
SC N, S# @} over the finite set of ordered partitions of the player set and var-
ious probability distributions{(pf’)ieg}, SC N, S= @, concerning leaders within
coalitions as well, we make use of the following two assumptions:
(PD) > p(S N\S) =1 orequivalently, > 2p(S,N\S) =1 foralli e N;
(P2 Y p>=1 forallSC N, S#.

ieS
Let (N, c) be a cooperativei-person game. An allocation € RN is said to be
consistenfwith respect to the underlying probabilistic framework) if there is no
inconsistency in what each of the players will be charged, either accordingrto
his expected outcome as given by (2.1). Thakiis a consistent allocation if and
only if X(N) = ¢(N) and the following holds: for all € N

c(N) +¢(S) —c(N\S)

2 2p(S N\S)[(1 - P + p( 5 —x(S\))] =%
Si’

or equivalently (due toR1)),

2.2) 3 2p(S N\ pF(C(N) + C(Sz) NS x(S)) — 0 foralli € N.

Soi
Under one additional assumption on the relevant probability distributions, the next
theorem states the existence and uniqueness of a consistent allocation. Further, an
explicit formula for the consistent allocation is presented. The additional assump-
tion takes into account the probability that a fixed player will be leader of coalitions
containing another variable player and requires that these probabilities are the same
for all variable players.

(P3) foralli e N > p(S N\Sp?® is constant for allj € N\i.

SCN,
i, j}
Letpi:= )  p(S N\S) piS represent the probability that playiewill be leader.
SCN,
Soi

Theorem 2.1. Suppose thatp(S, N\S) | SC N, S# 7} and{(pis)ies}, SC N,
S+# ¢, satisfy P1), (P2) and P3). Let (N, c) be a cooperative n-person game.
Then there exists a unique consistent allocatioa RN and it is given, for all
i €N, by
(2.3) x =[1—(=Dplc(N)+ (=1 > p(S N\S)pc(S) — c(N\9)].

SCN

Si
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Proof: In view of assumption®#3) we write

(2.4) Bii= Y p(SN\§p®> forallie Nandallje N\i.

SCN,
i, j}

Let (N, c) be a cooperative gamé,c N and x € RN a cost allocation for the
game(N, c). By some careful, but straightforward combinatorial computations
concerning some double sum, we arrive at the following chain of equalities:

> 2p(S N\S)pX(S)

i

= Y 2ps N\Spx+ 3 2ps NPt Y X,
= SN jesi

Si’ Si

= 2px+2 )% > p(SN\§p? (by definition of p;)

je N\i SCN,
J \ SOfi, j)

= 2piXi + 2x(N\i) pj (by definition of p;, see (2.4))
= 2piXi + 2[c(N) — x] pi (by efficiency ofx)

= 2[pi — Bi] % +2pic(N).

Hence the consistency constraint (2.2) for the allocatioeduces to the following
equality: for alli e N

> p(S. N\S)pT[c(S) — c(N\S)| + [ pi — 2/ ] c(N) = 2[ pi — Pi] .

Si

In order to deduce (2.3) from the latter equality, it remains to establisipthat p; =

ﬁ for all i € N. Actually, we claim that the following results hold:

2.5)
dopi=1L Zp-:l—p- and p-—p-:; foralli e N.
i ; =3 i i i 2(n—1)

ieN jEN

To prove the first statement in (2.5), some straightforward combinatorial compu-
tations concerning some double sum and applying the assumpB@par{d 1)
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respectively, yield the following chain of equalities:
dYopo= D> > (S N\Sp®  (reverse the order of the double sum

ieN ieN SCN

= Z PS N\S > pP

ieS

=2 Y psNg -1

SCN,

St

P1
(:) 1

To prove the second statement in (2.5), a similar reasoning, foeall, yields the
following chain of equalities:

> B @ > > p(S N\S)p} (reverse the order of the double sum

jeN\i jeN\i ssf‘uN,-’,
= Z PSS N\S > p}
jeS\i
(P2)

= ) p(SN\S)[1-pf]

SCN,
Si

= 1-p (by definition of ;).

From the obtained equalitigs ;.\ pj =1and}_;.y Pj = % — pi + pi, we deduce
that > ;. [Pj— Pj] = 3+ pi — fi for all i € N. It follows immediately that
pi— P = 2(n—£D for alli € N. That s, (2.5) holds which completes the full proof
of the theorem.

&

The following corollary presents the result by Evans [1996]. The straightforward
proof is left to the reader.

Corollary 2.1. Letthe “uniform” probability distribution{ p(S, N\S) | SC N, S#
7} be given by pS, N\S) :=[(n—1)- (ISI)]*lforaII SC N, S# ¢, and moreover,
let p ISI forall SC N, S#¢,andie S. ThenPl), (P2 and (P3) hold and

the unique consistent allocationexRN for a cooperative gameN, c) agrees with
the Shapley value, i.e., (2.3) reduces to

ee  x = YT as )

|
SCN n:
Soi
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which is equivalent to (1.1).

In the rest of this section, we suppose tiRt)( (P2) and P3) hold. Define the
consistent allocation rulas the rule that assigns to every cooperative gahe)

its unique consistent allocation as given by (2.3). We say the consistent allocation
rule possesses ttiummy player propertyf for every cooperative gaméN, c),

the consistent allocatior € RN satisfiesx; = c({i}) for every dummy player in

the gameN, ¢). Here playei is called adummyif c(S) — ¢(S\i) = c({i}) for all

SC Nwithie S

The next theorem presents two characterizations of the dummy player property to
hold true for the consistent allocation rule. A first characterization refers to nec-
essary and sufficient conditions on the underlying probability distributions stating
that the probability of a player’s leadership within a nontrivial coalition (with ref-
erence to the corresponding ordered partition of the player set) is the same for both
the coalition and its complementary coalition enlarged with the given player. The
second characterization requires the consistent allocation rule to be a probabilistic
marginalistic allocation rulecf. Weber [1988]) in that the allocation to any player

is some expected outcome of his marginal contributions in the game. Note that the
Shapley value is an example of a consistent allocation rule that satisfies the dummy
player property.

Proposition 2.1. For any coalition SC N and any player i€ N with i € S, de-
fine the “enlarged” complementary coalition®8 to be (N\S) U {i}. Then the
following three statements are equivalent.

(D1) The consistent allocation rule possesses the dummy player property.
(D2) The underlying probability distributions satisfy the next conditions:

PSN\SPS = p(&*, N\\S*H)pS"  whenevel(i} ¢ Sc N;

pdi, N\\i)- p' = Li—p foralli e N.

(D3) The consistent allocation rule is a probabilistic marginalistic allocation rule,
that is, for every i N, there exists a collection of non-negative real numbers
{g°] SC N, S> i} satisfying )~ q° = 1 such that, for every cooperative
SCN,

Soi
game(N, c), the consistent allocation; xo any player i is of the following
form:

Xi= Yy ae(S) —c(S\D)].
Proof:
(@ (D1) implies (D2).

Suppose the consistent allocation rule possesses the dummy player property. Let
SC Nandi e Nwithi e S S# {i}. Define the cooperative gam@, C) by

C(S) =1, ¢(S\i) := 1 and¢(T) := 0 otherwise. Clearly, playaris a dummy in

the game(N, €). Denote the consistent allocation of the gaghe ) by x € RN
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as given by (2.3). The dummy player property of the consistent allocation rule
yields x; = €({i}) = 0. However, by (2.3)x can be determined as follows by
distinguishing two cases:

X = 1-m-1p—m-1pdi} N\)p" if S=N

X = (n—D[p(S N\S)pS— p(SH, N\S*)pS™] if S#N.

From this, together witk; = 0, we conclude that (D1) implies (D2).
(b) (D2) implies (D3).
Suppose (D2) holds. Then for @l N the following chain of equalities holds.

Y p(S N\S)pTc(S) —c(N\9)]

fifcs

= 1% p(s N\S)pTc(9) — c(N\S) +c(S*) — c(N\S*)]
(e

= 13 ps N\S)pTc(9) — c(S\i) +e(SH) — c(S™H\D)]

lifcs

=" > p(S N\9p[c(S) —c(S\)].

SCN,
ijcs

Using this partial result, we deduce by straightforward calculations that, for all
i € N the consistent allocatiox as given by (2.3) reduces as follows:

23)

X [1—(=DpJcN)+ (=1 > p(S N\Spc(S) — c(N\S)]

= [1-m-Dp]eN)+ (n—Dpdi}, N\ p[e{ih) — c(N\D]

+ (=1 ) p(S N\S)pT[c(S) — c(S\)]

fifes

(D2)

[1— (n—Dpi][c(N) — c(N\D)]

+ (=1 ) p(S N\9pTc(S) —c(S\D)].

Si’

Hence, for alli € N the consistent allocatior is of the form given by (D3) by
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choosinggs := (n— 1) p(S, N\S)pSfor all SC N with i € Sandgl, :=1— (n—
1) pi. Note that for alli € N, by definition of pj,

S ds=(n-1> pS N\SPS+dy=(—Dpi+dy =1
SN, SCN,
Ssi Soi

This completes the proof of (b).

() (D3) implies (D1).

This implication is trivial by the definition of a dummy player and the assumption
on the collection{g®| SC N, S> i} for any playeri € N.
<

Up to now, we have only treated the case in which the set of players was unordered.
LetL (P) be a subfamily of permitted coalitions depending on a p&set(N, <).
Within our probabilistic framework, this can be modelled by making the probabil-
ity p(S, N\S) equal to zero whenevesor N\S¢ L (P). Itis clear that we have
to make the following assumption:

(C) SeL(P)ifandonly if N\Se L (P) forall SC N.
As an extra condition one could decide that only a playe6for which there does
not exist a playerj € Swith j > i can be leader o§. This can be modelled by
making the probabilityp? equal to zero for all playerge Sfor which there exists
a playerk € Swith j < k. If the (adjusted) probability distributiong(S, N\S) |
S<¢ N, S# 0} and{(pd)ics}, SE N, S# 0 satisfy the conditionsR1), (P2) and
(P3), the results presented in this section stay valid.

However, subfamiliet (P) such as (1.2) and (1.3) do not satisty)( Therefore,
in the next section, we propose another approach that also yields a generalized
Shapley value.

3. THE RECURSIVE SHAPLEY VALUE

In this section, the recursive formula for the Shapley value presented by Spru-
mont [1990] is treated. This formula has only been defined for cooperative games
(P, c) whereL (P) = 2N. We give a generalization of this formula that holds for a
larger class of subfamiliels (P).

Consider a coalitioT < N and restrict the cost functioa: 2N — R to 2T. A
vectorx € R is called a cost allocation ¥(T) = c¢(T).

The Shapley value of a gani&, c) is defined as

@1 ¢(To=) (5= Df%,” 150 (C(S) - c(S\i)) foralli e T.
e '

Sprumont [1990] proved the following recursive formula for the Shapley value of
a game(T, c) for all non-empty coalition§ € N.

32  ¢i(T.0)= %(cm —c(M\)+ Y ¢i(T\], c)) foralli e T.
jeT\i
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Consider a subfamily (P). A playeri is calledunrestrictedin a coalition S €
L (P) if L (P) containsS\i. Denote the set of unrestricted playersShy S, i.e.,
S =1{ie S| S\i € L(P)}. We make use of the following assumption.

(A) S*isnon-empty for allSe L (P)\@.
Because of this assumption, a coalitibr L (P) exists for every size & |T| < n.

A poset(T, <), whereT is a permitted coalition, is obtained frof in the fol-
lowing way: i < jin (T, <) ifand only ifi < jin P. LetL ((T, <)) be the sub-
family of permitted coalitions restricted 16T, <), i.e., L ((T, <)) = 2" nL (P).
An allocation ruley prescribes for each cooperative gaf€, <), ¢) exactly one
allocation. We use the notatiohs(T) instead ofL ((T, <)) and, for an allocation
rule v, ¥ (T, c) instead ofy((T, <), c) if the structural context is clear.

It is easy to see that, besidegP) = 2V, (1.2) and (1.3) also satisfyAj. Note
thatin (1.2), S* = St and in (1.3), S* = St U S, whereS" denotes the set of
maximal players an&~ denotes the set of minimal players. A player Sis called
maximalin Sif there does not exist a playgre Swith j >~ i. A playeri € Sis
calledminimalin Sif there does not exist a playgre Swith j <.

From now on, we only consider subfamilieg P) containingN that satisfy A).
Consider afixed gameP, ¢). Forall T € L (P), we define the vectap' (T, ¢) e RT
as

(3.3) ¢l(T.oy= Y y(T. S)(C(S)—C(S\i)) foralli e T,
Sel(T),
Skai

where for allT € L (P), Se L(T), S+# ¢, the coefficienty/ (T, S) are recursively
given by

|T1*| it S=T
(3.4) y(T,5 =
T > ¥(T\}.S) otherwise.

JeT*\S

Before proving thap" is an allocation rule, we first show thatt is a generalization
of the Shapley value.

Proposition 3.1. Forall T e L(P), T # @, ¢ (T,c) = ¢(T,c) if L(T) =2".

Proof: First note thatS* = Sfor all SC T if L(T) = 2". Hence, by (3.1), it

suffices to show that

4TI =SS = 1!
IT]!

By assumptionA), we can use induction dif|. Note that_ (S) =2Sforall SC T

if L(T)=2T.

If |T| =1theny(T,T)=1. SupposeT| > 1. We have, by definition,

1 (TI=1TDHT = D)!

(T7 T) = = =
4 ] !

forall SC T, S#£4.
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If SC T, S# @, we have

1 .
y(T,9 = > y(M\p S

|T| JET\S

3 (T =19 =D!(S - D!
(ITI=DIT]

JET\S

(AT =1SPHdsS - D!
T

<&

In the following theorem, we show thaf (T, ¢) is a cost allocation for all €

L (P). Furthermoreg{ (T, c) can easily be computed for all € L (P), T # ¢

if @[ (T\j,c)is known for all j € T*\i. It turns out that ifi is an unrestricted
player in the permitted coalitiom, ¢{ (T, c) is the sum of the marginal contribution
¢(T) — c(T\i) and the cost allocations fan the gamegT\ j, ¢), wherej # i is

also an unrestricted player ih, divided by the number of unrestricted players in
T. If i € T is not an unrestricted playep; (T, c) is simply the average of the cost
allocations ta in the games with one unrestricted player less. Therefore, we call
¢" theRecursive Shapley valsee also Proposition 3.1).

Theorem3.1.Forall T e L(P), T # ¢, ¢'(T,c) is an allocation that can be
determined recursively by

(3.5)
|-|-1*|[C(T)—C(T\i)+ > #{(T\j,0)] forallieT*
jeT*\i
¢(T.0) =
|T1*| D ¢l(T\j.©) foralli e T\T*.

jeT*

Proof: First we will prove that the recursive form holds. This will be done by some
combinatorial computations concerning some double sum.

SupposeT € L (P) andi € T. There are two cases.

(@ ieT
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We have
#(T0 F Y T e -cs\)]
50
(3.4) 1 . . .
= —[eM-cMD]+ > == > v(Mi S -cS\i)]
| | sELSg;I\T| |jeT*\S
1 . . .
= |T*|[C(T)—C(T\|)]+ > T > v(M\i9e(9) —c(S\h]
jeTH\i &g;\n
1 . .
@3 |T*|[c(T)—C(T\|)+ Z ¢ (T\], 0]
JeT*\i
(b) ieT\T*
We have
ST E Y T 9 -c(s\)]
Sel(T),
Skai
1 . .
S == Y ML S - e(S\)]
sL), T~ jeT*\S
Skai
= Y= 2 (M 9e® —cs\)]
jeT*| |3e§*<;\1')
@3 1 r .
= [(T\].0).
T j;yw \i.©)

We finish the proof by showing that for all e L (P), T # @, ¢"(T,c) is a cost
allocation. By assumptiord(), induction on the coalition sizgT| is allowed. If
T ={i}, ¢/(T,c) =c(T). SupposgT| > 1. We can use the recursive form as
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follows:
1 : :
Yoo E Y oM —cMi+ Y. ¢l(T\j.o)]
ieT ieT* 1Tl JeT\I
+ > |T*|Z¢.(T\J c)
ieT\T* jeT*
= o) - = Z°< \>+Z = D #(M\.0
|T ||eT* ieT | | jeT*\i
= - ZC(T\|)+Z = > #l(T\j.c)
| ||eT* JeT*| ||eT\j
1 :
= oM —==> cMi)+=> cT\j)
T & T &%
= c(T).

<&

Note that in cas& (T) = 2T, whereT € L (P)\@, (3.5) changes into (3.2). More-
over,incasd (T) ={SC T|if j € Stheni € Sforalli < j}, whereT € L (P)\¥,

the Recursive Shapley value does not coincide with the Shapley value under prece-
dence constraints introduced by Faigle and Kern [1992].

Proposition 3.2 states that the Recursive Shapley value is a probabilistic marginal-
istic allocation rule in that the allocation to any player is some expected outcome
of his marginal contributions in the game.

Proposition 3.2. ¢ is a probabilistic marginalistic allocation rule, that is, for
all T e L(P), Se L(T), S# ¢, the coefficients/(T, S) are positive and for all
TeL(P),ieT, Y y(T,9=1

SeL(T),
S¥ai

Proof: It is straightforward to see that the real numbe¢3, S) are positive for all

TelL(P),SeL(T), S#@. Toprove thatforall e L(P),i e T,

> y(T,S) =1, we use induction on the coalition sifE| which is allowed by
SEL(T)

assumptlonA) If T={i}, theny(T, T)=1. Supposel € L(P),|T| > 1 and
i € T. There are two cases.

@ ieT
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We have
YyuTs = yT.DH+ Y wT.9
S =0T
34 1 1 .
= St Y. 2 ryMi9
SLT. jeTAS
. 1 T S
= Tt X 2 YMS
jeT*\i SeL(T\))
S¥ai
1 1 : , .
= T + Z T (by the induction hypothesis)
JeTx\i
= 1
(b) i eT\T™
We have

Y oy & |Tl*| > Y yMis

Sel (T), SeL(™), jeT*\S
S¥si S¥si

= D 2 v
fer 1Tl 05
S¥ai
= Y T (by the induction hypothesis)
jeT*
= 1.

<&

As mentioned in the introduction, a cost allocation should be “fair” in some sense.
A possible way to define fair allocations is to demand that they are icdresof

a cooperative game. The idea of the core of a game essentially goes back to von
Neumann and Morgenstern [1944]. cd¥eg) is the set of all allocationg € RN

for which there is no coalitior5 € N such thatx(S) > ¢(S), which means that

no coalition should have to pay more than its cost. It turns out that the Shapley
value lies not in the core for a general cooperative game. However, for the class of
the so-called quasi-convex games, Sprumont [1990] proved that the Shapley value
belongs to the core.

In our generalized model, for a given subfamlily P), we define

corgP,c) = {xe RN | x(N) =c(N) and x(S) < c(S) forall Se L(P)\N}.
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We make one extra assumption to hold for a subfarify). It is straightforward
to see that, besidds(P) = 2N, (1.2) and (1.3) also satisfy this assumption.

(B) SNT*C S forall T e L(P),SeL(T).

A cooperative gaméP, ¢) is calledquasi-concavéf

Y [e®-cs\]= Y [e(T)—c(T\i)] forall Tel(P), SeL(T).

ieSNT* ieSNT*

Clearly, this definition corresponds with the original definition of quasi-convexity
as given by Sprumont [1990] lif (P) = 2N. Note that, because of assumpti@),(
S\ieL(P) forall TeL(P),SeL(T)andi e SNT*

In the following theorem, we generalize the result of Sprumont [1990] for subfam-
ilies L (P) not necessarily equal td'2 The recursive formula af" turns out to be
very useful in the proof.

Theorem 3.2. Let L (P) be a subfamily that satisfies assumptidy) and B). If
the cooperative game () is quasi-concave, thepl (P, c) € core(P, c).

Proof: If (P, ¢) is quasi-concave, then each subgaiBec) is quasi-concave for
all Se L (P). Furthermore, by assumptiai#\ ), we can use induction oN|. If
N ={i}, ¢{(P,c)=c({i}). Supposer > 2 andT € L (P).

1 . 1 .
Yelro Y RN —eNWD]+3 e 3 gl(Nj 0

ieT ieN*NT ieT jeN*\i

1

= 2 [eN —eN\D]+ = > Y (N, o)
| | ieN*NT | | JEN*NTieT\]j
1 .
o 2L 2 N0
| |jeN*\TieT
< 1 N N\ ! T\i
< IN*I-;WT[C( ) — ¢ \I)]+|N*|_Z: c(T\})
ie JeN*NT

+ 1* Z c(T) (by (B) and the induction hypothesis)
JEN®\T

z

1
N~ |

IA

> e —c(mi]+

ieN*NT |

PDRCEAY))

JeN*NT

*|
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1 . .
+ N je%:\T c(T) (by quasi-concavity ofP, c¢))

1
= |N*|[|N*0TI+IN*\T|]C(T)

= ¢(T).
<

In Paulusma [1997], more information on the two extensions of the Shapley value
can be found. For which poset structures, there exist efficient algorithms for the
deterministic evaluation of these values is still an open problem.
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