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Abstract

We prove that for every integer g ≥ 0 and graph H, there exists a
polynomial-time algorithm deciding whether an input graph of Euler
genus at most g can be contracted to H.

We introduce surface contractions and surface topological minors
of embedded graphs. We prove that an embedded graph H is a surface
contraction of an embedded graph G if and only if the geometric dual
of H is a surface topological minor of the geometric dual of G.
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1 Introduction

An edge contraction of an edge e in a graph is the graph obtained by removing
e, identifying its two endpoints, and eliminating parallel edges that may
appear. Some basic properties of contractions are collected in [23]. Formally,
for an edge e with endpoints u and w, the contraction of e is the graph with
vertex set V (G/e) = V (G) \ {u,w} ∪ {vuw} and edge set

E \ { {x, y} ∈ E : x ∈ {u,w}, y ∈ V }
∪ { {vuw, x} : {x, u} ∈ E ∨ {x,w} ∈ E }.

A graph H is a contraction of a graph G (or G is contractible to H) if H
can be obtained from G by a sequence of edge contractions.

1.1 Previous work.

The problem of checking whether a graph is a contraction of another has
already attracted some attention. In this subsection we briefly survey known
results. For a fixed graph H, the algorithmic H-contractibility problem
is to decide if the input graph is contractible to H.

Stars and triangle-free patterns.

Perhaps the first systematic study of contractions was undertaken by Brouwer
and Veldman [2]. Here are two main theorems from that paper.

Theorem 1 (Theorem 3 in [2]). A graph G is contractible to K1,m if and
only if G is connected and contains an independent set S of m vertices such
that G− S is connected.

In particular, a graph is contractible to P3 if and only if it is connected and
is neither a cycle nor a complete graph. The theorem also allows to detect, in
polynomial time, if a graph is contractible to K1,m. It suffices to enumerate
over all sets S with m independent vertices and check if the graph G− S is
connected. This gives an |V (G)|O(m) algorithm for K1,m-contractibility
(in particular for P3-contractibility), which is polynomial for every fixed
m.

Theorem 2 (Theorem 9 in [2]). If H is a connected triangle-free graph other
than a star, then H-contractibility is NP-complete.

2



Hence, checking if a graph is contractible to P4 or C4 is NP-complete.
More generally, it is NP-complete for every bipartite graph with at least one
connected component that is not a star.

Patterns up to 5 vertices.

The research direction initiated by Brouwer and Veldman was continued by
Levin, Paulusma, and Woeginger [12], [13]. Here is the main result estab-
lished in these two papers.

Theorem 3 (Theorem 3 in [12]). Let H be a connected graph on at most
5 vertices. If H has a dominating vertex, then H-contractibility can be
decided in polynomial time. If H does not have a dominating vertex, then
H-contractibility is NP-complete.

However, the existence of a dominating vertex in the pattern H is not
enough to ensure that contractibility to H can be decided in polynomial time.
A pattern on 69 vertices for which contractibility to H is NP-complete was
exhibited in [10].

When the pattern is part of input.

Looking at contractions to fixed pattern graphs (H-contractibility) is
justified by the following theorems proved by Matoušek and Thomas in [15].

Theorem 4 (Theorem 4.1 in [15]). The problem of deciding, given two input
graphs G and H, whether G is contractible to H is NP-complete even if we
impose one of the following restrictions on G and H:

(i) H and G are trees of bounded diameter,

(ii) H and G are trees all whose vertices but one have degree at most 5.

Theorem 5 (Theorem 4.3 in [15]). For every fixed k, the problem of deciding,
given two input graphs G and H, whether G is contractible to H is NP-
complete even if we restrict G to partial k-trees and H to k-connected graphs.

The authors also proved a positive result.

Theorem 6 (Theorem 5.14 in [15]). For every fixed ∆, k, there exists an
O(|V (H)|k+1 · |V (G)|) algorithm to decide, given two input graphs G and H,
whether G is contractible to H, when the maximum degree of H is at most
∆ and G is a partial k-tree.
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Cyclicity.

The cyclicity of a graph G is defined as the largest integer k for which G is
contractible to a cycle on k vertices. Exact values for some graphs and lower
and upper bounds for some classes of graphs are given by Hammack in [9].
He also presented a polynomial-time algorithm for computing cyclicity of a
planar graph.

Non-recursive classes closed under taking of contractions.

Another type of containment relation close to contractions – induced minors
– was studied by Matoušek, Nešetřil, and Thomas in [14]. A graph is an
induced minor of another if the first is a contraction of an induced subgraph
of the latter. The authors of [14] prove (Theorem 1.8) that there exists a
class closed under taking of induced minors which is non-recursive (i.e. there
is no algorithm to test the membership in this class). Clearly, a class of
graphs closed under taking of induced minors is also closed under taking
of contractions (and induced subgraphs) so we restate their result in the
following way.

Theorem 7 (Theorem 1.18 in [14]). There exists a non-recursive class of
graphs closed under taking of contractions (and induced subgraphs).

Wagner’s Conjecture for contractions.

The statement usually referred to as Wagner’s Conjecture is that for any
infinite sequence G0, G1, . . . of graphs, there is a pair i, j such that i < j
and Gi is a minor of Gj. The proof of Wagner’s Conjecture is one of the
highlights of the Graph Minors project [22].

A contraction version of Wagner’s Conjecture was considered by Demaine,
Hajiaghayi, and Kawarabayashi in [3]. They disproved this version showing
the following.

Theorem 8 (Theorem 31 in [3]). There is an infinite sequence G0, G1, . . . of
connected graphs such that, for every pair i, j (i 6= j), Gi is not a contraction
of Gj.

However, the authors also proved that the conjecture holds when the
graphs in the sequence are required to be trees, or triangulated planar graphs,
or 2-connected embedded outerplanar graphs.
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1.2 Our contribution.

A graph is a minor of another if the first is a contraction of a subgraph of the
latter. Graph Minors is a celebrated project by Robertson and Seymour that
is considered to be an important part of modern Graph Theory. One of the
algorithmic consequences of Graph Minors is that, for every graph H, there
exists a cubic-time algorithm deciding whether the input graph contains H
as a minor [20]; and another, for every class of graphs closed under taking
minors, there exists a cubic-time algorithm deciding whether the input graph
belongs to this class [22].

While graph minors are well-studied both from combinatorial and algo-
rithmic point of view, relatively little is known about graph contractions
which are rather close to graph minors. Algorithmically, they are much less
tractable compared to minors. As mentioned in the previous subsection,
there are graphs for which it is NP-complete to decide if the input graph
is contractible to them; and there are non-recursive classes of graphs, that
are closed under taking of contractions, where there is no algorithm deciding
whether an input graph belongs to this class.

In this work we show, for a large class of inputs – graphs embeddable on
surfaces – how to decide in polynomial time if a fixed graph is a contraction of
the input. The key idea is to introduce surface versions of contractions and
topological minors for graphs on surfaces. The difference between surface
containment relations and the usual definition of contraction and topological
minor is that the first respect the embedding. We show that a graph H
embedded on a surface Σ is a surface contraction of a graph G embedded on
Σ if the dual of H is a surface topological minor of the dual of G.

To use this duality algorithmically, we need to show that surface topolog-
ical minors can also be found in polynomial time. This is done by reducing
the problem of finding a surface topological minor to solving an instance of
the disjoint path problem that can be solved in cubic time due to the main
algorithmic result of Graph Minors [21].

2 Definitions

Basics.

We consider both simple graphs and multigraphs. When there is no ambi-
guity, “a graph” means a simple graph or multigraph. When we want to
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emphasize that multiple edges are allowed we say “a multigraph” and “a
simple graph” if they are not allowed. For a (multi)graph G, let V (G) be its
vertex set and E(G) its edge (multi)set. We allow graphs and multigraphs
to have loops. Note that a loop contributes 2 to the degree of a vertex. For
notation not defined here, we refer the reader to the monograph [4].

The geometric dual of a graph G embedded on a surface Σ will be denoted
by G∗. [16, p. 103] The dual of a graph may be a multigraph. Notice that
there is a one-to-one correspondence between the edges of G and the edges
of G∗. We keep the convention that e∗ is the edge of G∗ corresponding to
edge e of G.

A graph H is a subdivision of a graph G, when H can be obtained from
G by subdividing its edges (i.e., replacing edges by paths). A graph H is
a topological minor of a graph G if H is a subdivision of a subgraph of G.
Vertices of degree ≥ 3 in a subdivision are called branch vertices.

In this paper we consider the algorithmic problem of contracting an input
graph G to a fixed graph H. Below we will assume that both H and G are
connected. This can be done without loss of generality. If G and H are
not connected, we consider contracting different connected components of
G to different connected components of H. Since H is fixed, this will only
contribute to a constant (in |V (G)|) factor in the computational complexity
of the algorithm.

Embeddings.

In this work, we only need to distinguish between essentially different em-
beddings of a graph embedded on a surface. This motivates the following
definition.

Two graphs G and H embedded on a surface Σ are combinatorially equiv-
alent (G ' H) if there exists a homeomorphism of Σ (in which they are
embedded) that transforms one into the other. The relation of being com-
binatorially equivalent is reflexive, symmetric and transitive, and thus an
equivalence relation. Let G be the class of all graphs embeddable on Σ and
isomorphic to a graph G and let us consider the quotient set G/ '. The
equivalence classes (i.e., the elements of the quotient set) can be thought of
as embeddings. In fact, we will work with embeddings, but for simplicity, we
will pick a representative (embedded) graph for each embedding.
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Figure 1: A thin triangulated planar graph.

Homotopic edges and thin graphs.

Two edges of an embedded graph are homotopic edges if they together bound
a 2-face (a face incident with exactly 2 edges). Following [1], a thin graph is
a multigraph embedded on a surface that has no homotopic pairs of edges
(see Figure 1). It turns out that thin plane multigraphs cannot have more
edges than simple maximal plane graphs.

Lemma 9 (Lemma 5 in [1]). If G is a thin plane graph, then |E(G)| ≤
3|V (G)| − 6.

We will prove that thin graphs embeddable on a surface Σ cannot have
more than simple maximal graphs embeddable on Σ.

Lemma 10. Let g ≥ 0 be an integer and G be a graph with at least 3
edges embeddable on a surface of Euler genus g. If G is a thin graph, then
|E(G)| ≤ 3(|V (G)|+ 2g)− 6.

Proof. Let us remember the Euler’s formula for graphs embedded on a sur-
face. If F (G) is the set of faces of G and g the Euler’s genus of the surface,
then |F (G)| − |E(G)|+ |V (G)| = 2(1− g) [16, (4.1) & (4.4), p. 101].

Notice that if G is a maximal thin graph on a surface, then all its faces
are bounded by three edges. Hence, 2 · |E(G)| = 3 · |F (G)|. Substituting it
back in the Euler’s formula, we have that the number of edges of a maximal
thin graph embeddable on a surface of Euler’s genus g is,

|E(G)| = 3(|V (G)|+ 2g)− 6.

The lemma follows.

Surface containment relations.

A surface contraction of an edge e of an embedded graph G is an embedded
graph G′ that is obtained by homeomorphically mapping the endpoints of e
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in G to a single vertex without any edge crossings and recursively removing
one of two homotopic edges, if a graph has such a pair. Notice that there are
many surface contractions of an edge of an embedded graph G but they are
all combinatorially equivalent.

A surface dissolution of a vertex v of degree 2 in an embedded graph G
is a surface contraction of one of the two edges v is incident with in G.

Let G and H be two embedded graphs. We say that H is a surface
contraction of G (H ≤ec G), if H is combinatorially equivalent to a graph
that can be obtained from G by a series of surface contractions. We say that
H is a surface topological minor of G (H ≤etm G), if H is combinatorially
equivalent to a graph that can be obtained from G by a series of vertex and
edge deletions, and surface dissolution of vertices of degree 2.

3 Contractions vs topological minors

Lemma 11. Let Σ be a surface. H and G be two thin graphs embedded on
Σ and H∗, G∗ their respective duals.

H ≤ec G ⇐⇒ H∗ ≤etm G∗

Proof. Let G be a thin graph and e an edge of G. Let G/e be a surface
contraction of e in G. Notice that G/e

∗ is isomorphic to an embedded graph
obtained from G∗ by deleting e∗ and recursively applying surface dissolutions
of vertices of degree 2. (Pairs of homotopic edges in an embedded graph
correspond to vertices of degree 2 in its dual.) Let us also note that G/e is
an embedded graph with no homotopic edges.

If H can be obtained from G by a series of surface contractions, then H∗

can be obtained from G∗ by a series of edge deletions and surface dissolutions
of vertices of degree 2. Hence, if H is a surface contraction of G, then H∗ is
a surface topological minor of G∗. This proves the forward implication.

For the backward implication, suppose that H∗ is a surface topological
minor of G∗; that is H∗ can be obtained from G∗ by a sequence of vertex
deletions, edge deletions, and surface dissolutions of vertices of degree 2.

Let us notice that removing a vertex v in a embedded graph can be
simulated by removing all but two edges incident to v, then applying a surface
dissolution to v and removing the new edge. Hence, a sequence of vertex
deletions, edge deletions, and surface dissolutions of vertices of degree 2 can
be replaced by a sequence of edge deletions and surface dissolutions of vertices
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of degree 2. The sequence can be rearranged and split into groups – every
group consists of an edge removal and appropriate surface dissolutions of
vertices of degree 2.

Each group of operations in an embedded graph corresponds to a surface
edge contraction in its dual. The sequence of operations that transform G∗

into H∗ corresponds to a sequence of surface edge contractions that brings
G into H. Hence, the backward implication.

A simple graph H embedded on a surface Σ is a schema of a multigraph
H ′ embeddable on Σ, if V (H) = V (H ′) and two vertices are adjacent in
H if and only if they are adjacent in H ′. In other words, a schema of the
multigraph is the graph obtained by replacing multiple with single edges. Let
C(H) be a maximal set of thin embedded (on Σ) multigraphs whose schema
is H such that they are all combinatorially different.

Lemma 12. Let Σ be a surface. For every graph H embeddable on Σ, the
set C(H) is finite.

Proof. Combinatorially different embeddings of a multigraph H embeddable
on Σ are determined by cyclic orders of neighbors on vertices. There might
be infinitely many embeddings of a multigraph embeddable on Σ. However,
we are confined to thin embedded graphs only and each will have at most
3(|V (H)| + 2g) − 6 edges by Lemma 10. Hence, the number of possible
different cyclic orderings is finite.

Theorem 13. Let Σ be a surface. Let H and G be simple graphs embeddable
on Σ and G̃ a graph embedded on Σ and isomorphic to G. Then,

H <c G ⇐⇒ ∃ H̃ ∈ C(H) such that H̃ <ec G̃.

Proof. For the backward implication, let H be the schema of some H̃ ∈ C(H).

(H is a simple graph.) Let us notice that if H̃ is combinatorially equivalent to

a surface contraction of G̃, then G̃ (and its abstract graph G) are isomorphic
to a contraction of H.

For the forward implication, let us assume that H <c G. There exists a
sequence of edge contractions that brings G into H. Let us apply the same
sequence as a sequence of surface contractions to G̃ and call the resulting
graph T̃ . From the definition of surface contraction, T̃ is thin. Notice that
its schema is H. From the choice of C(H), there exists H̃ ∈ C(H) that is

combinatorially equivalent to T̃ .
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A direct consequence of Lemma 11 and Theorem 13 is the following corol-
lary.

Corollary 14. Let Σ be a surface. Let H and G be graphs embeddable on Σ
and G̃ a graph embedded on Σ and isomorphic to G. Then,

H <c G ⇐⇒ ∃ H̃ ∈ C(H) such that H̃∗ <etm G̃∗.

4 Surface topological minors and the algo-

rithm

In this section, we reduce the problem of finding a surface topological minor
to the the problem of finding a collection of disjoint paths in a graph. Here
is a result from Graph Minors we will need later.

Theorem 15 ([21]). There exists an algorithm that given a graph G and k
pairs (s1, t1), . . . , (sk, tk) of vertices of G decides whether there are k vertex-
disjoint paths P1, . . . , Pk in G such that Pi joins si and ti, for all i = 1, . . . , k,
and if so, finds them. The algorithm runs in time O(|V (G)|3).

Theorem 16. Let Σ be a surface. For every graph H embedded on Σ, there
exists a polynomial-time algorithm that given a graph G embedded on Σ de-
cides if H is a surface topological minor of G, and if so, finds the subgraph
which is a subdivision of H.

Proof. A k-star is a connected bipartite graph whose one part has one vertex
(the center) and the other part has k vertices (the leaves). A star is a graph
that is a k-star for some k. A labelled star is a subgraph of G that is a star
and whose center is labelled with a vertex from V (H) and whose leaves are
labelled with different edges from E(H) that are incident with v in H. A
labelled star Q is said to be compatible with v ∈ V (H) if it is a deg(v)-star,
its center is labelled with v, and the cyclic ordering of the labels on the leaves
of Q is the same as the cyclic ordering of the edges incident with v in H.

Let us fix an ordering v1, . . . , v|V (H)| of V (H) and an ordering e1, . . . , e|E(H)|
of E(H). A branching is a |V (H)|-tuple (Qvi : i = 1, . . . , |V (H)|) such that
Qvi for i = 1, . . . , |V (H)| is a labelled star compatible with vi. A good branch-
ing is one in which no two centers of stars coincide. Let Q be the set of all
different good branchings. Notice that |Q| is bounded by |V (G)|O(|V (H)|).
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For a branching fromQ we define an instance of the disjoint path problem.
We start with |E(H)| pairs of terminals and later will be possibly removing
some. For every j = 1, . . . , |E(H)|, let {sj, tj} is the two vertices of G that
are labelled with ej in the branching. We then remove from the set of pairs
such {sj, tj} that sj and tj are adjacent. We then remove all centers of stars
from G.

Claim. H is a surface topological minor of G if and only if there exists a
branching from Q that defines a feasible disjoint path instance.

If H is a surface topological minor of G, then the branching is given by
the set of stars centered at the branch vertices of H whose edges incident
with the center are those that belong to the model of H in G.

If there is a branching in Q that defines a feasible disjoint path instance,
then the union of the disjoint paths and the stars in the branching give a
model of a surface topological minor of H in G.

Now we are ready to present an algorithm that for a fixed graph H decides
if an embedded graph G contains H as a minor topological minor of G. First
the algorithm constructs the set Q. Then, for every branching from Q the
algorithm constructs an instance of the disjoint paths problem and tests its
feasibility.

The correctness of the algorithm is a direct consequence of the Claim. To
see that the running time of the algorithm is polynomial in |V (G)|, notice that
– as mentioned before – the cardinality of Q is bounded by |V (G)|O(|V (H)|);
building an instance of the disjoint paths problem out of a branching can be
done in polynomial time; and testing feasibility of those instances can also
be done in polynomial time by Theorem 15.

Theorem 17. Let Σ be a surface. For every graph H, there exists a polynomial-
time algorithm that given a graph G embeddable on Σ decides whether H is
a contraction of G, and if so finds a series of contractions transforming G
into H.

Proof. We can assume that both G and H are connected; otherwise, we
consider contractions of different connected components of G to different
connected components of H. We can also assume that H is embeddable on
Σ since G can never be contracted to a graph that is not.

First we embed G on Σ using the linear-time algorithm from [17]. Let G̃

be this embedded graph isomorphic to G and G̃∗ its dual. For every graph
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H from C(H), test if H̃∗ is an embedded topological minor of G̃∗, using the
algorithm from Theorem 16.

The correctness of the algorithm follows from Corollary 14 and Lemma
12. The fact that the algorithm runs in polynomial time follows from Lemma
12 and Theorem 16.

5 Discussion

We conclude with a number of remarks and a conjecture.

Solution via dual.

We prove our result by investigating what operation in the dual graph G∗

corresponds to contractions in G. We want to mention that the same ap-
proach proved to be successful in studying maximum cuts in planar graphs.
A maximum cut of a graph is its maximum bipartite subgraph. Orlova and
Dorfman [19] and independently Hadlock [8] noticed that a (maximum) bi-
partite subgraph in G is an (maximum) Eulerian subgraph in G∗. Maximum
Eulerian subgraphs can be found in polynomial time, therefore they proved
that the maximum cut problem can be solved in polynomial-time in planar
graphs.

Non-recursive classes of planar graphs.

We prove in this paper that for every graph H, there exists an algorithm
that given a planar input graph G decides whether H is a contraction of G.
To complement this result we would like to note that there are classes of
planar graphs closed under taking of contractions that are non-recursive. A
closer look at the proof of Theorem 7 in [14] reveals that the graphs in the
non-recursive class from the theorem are in fact planar (and even have no
K−5 minor). We state it more formally.

Corollary 18. There exists a non-recursive class of planar graphs closed
under taking contractions.

Cyclicity in bounded genus graphs.

Cycles have a unique embedding into the plane (up to combinatorial equiv-
alence) and the dual of a cycle on k vertices is the multigraph with two

12



vertices and k parallel edges. Therefore computing cyclicity of a plane graph
is equivalent to solving the maximum flow problem in the dual for every pair
of vertices (as the source and sink).

Hammack, also using the maximum flow problem, showed how to compute
cyclicity of a planar graph [9]. Our result for bounded genus graphs allow to
extend this result to graphs embeddable in an arbitrary suface.

Complexity of topological minor checking.

The running time of our algorithm checking if H is a surface topological
minor of G is O(|V (G)||V (H)|). From the point of view of parameterized
complexity, that is, asking for an f(|V (H)|) · |V (G)|O(1) step algorithm (i.e.
classify it in the complexity class FPT when parameterized by the size of
H), this is hardly satisfying. (We refer to [5, 18, 6] for more information on
parameterized complexity.)

Recently, Grohe et al. announced an FPT algorithm for deciding if a fixed
graph is a topological minor of an input graph [7]. However, their algorithm
does not solve the problem we are interested in - surface topological minor.
This is why we use the disjoint paths approach to obtain a polynomial-time
(for every fixed H) algorithm.

Whether checking for surface topological minor belongs to the class FPT is
not known even when the input graph is restricted to be embedded on a
surface. We conjecture that this in fact is the case.

Conjecture. For a surface Σ and a graph H, the problem of deciding whether
H is a surface topological minor of a input graph G embedded on Σ is FPT,
when parameterized by |V (H)|.
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Dimitrios M. Thilikos. On contracting graphs to fixed pattern graphs.
In Jan van Leeuwen, Anca Muscholl, David Peleg, Jaroslav Pokorný,
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