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Chapter 1

Introduction

Suppose a group of persons or organizations decide to work together in order
to make a profit on some market or to do an investment (building an electricity
network, constructing a railway etc.). Then the question arises how to split the
joint profit or cost. This allocation problem can be modeled and analyzed by
(cooperative) game theory, which tries to come up with “fair” solutions (Sec-
tion 1.1). This thesis studies several well-known allocation problems, where
the cost or profit is computed as the optimal value of some discrete optimiza-
tion problem. We are especially interested in the computational complexity
of some frequently used solution concepts. Section 1.2 deals with complexity
theory and in Section 1.3 we treat some polyhedral theory. For readers not
familiar with graph theory some basic terminology is included in Section 1.4.
We end the chapter with an outline of the thesis.

1.1 Game theory

Game theory is a field of mathematical research that models and analyzes sit-
uations of conflict. In such a situation, two or more individuals (theplayers)
with similar or different interests are taking actions or making decisions. The
foundations of game theory can be found in the paper of Von Neumann [1928]
and the book “Theory of Games and Economic Behavior” by Von Neumann
and Morgenstern [1944]. The situation of conflict first is described as a math-
ematical model (thegame). One then uses mathematical solution methods to
come to a set of proposed pay-offs for each player. For a survey on game
theory we refer to the books of Owen [1995] and Shubik [1982].

1



2 Introduction

This thesis deals with so-called cooperative game theory, where players are
allowed to cooperate with each other in order to optimize their profits (costs).

Definition 1.1 A cooperative game in characteristic function formis given
by an ordered pair.N; v/, whereN is a nonempty, finite set andv : 2N→R+
is a function satisfyingv.∅/= 0. The setN is called theplayer setand itsn el-
ements are theplayersof the game. The functionv is called thecharacteristic
functionof the game. �

If a subset of players inN decide to work together, then they form acoalition.
The mappingv assigns to each coalitionS⊆ N some outcomev.S/, thevalue
or worthof coalitionS. v.S/ does not depend on the players outsideS. It can
be interpreted as the maximal profit or minimal cost that the players inS
can achieve if they decide to form a coalition. In case of acost functionit
is common to writec instead ofv. In the rest of this thesis we speak of a
(cooperative) gameinstead of a cooperative game in characteristic function
form. In case of a profit functionv we may speak of aprofit gameand in case
of a cost functionc we may speak of acost game.

In cooperative game theory it is often assumed that the players decide to work
all together. In that case thegrand coalition Nis formed. The central problem
is to find a “fair” distribution of the total valuev.N/ among the individual
playersi ∈ N. Let xi denote the amount allocated to playeri ∈ N. A vector
x ∈ RN is anallocation if x is efficient, i.e., x.N/ = v.N/. (Throughout the
thesis, we use the shorthand notationx.S/ =

∑
i∈S

xi :)

A solution conceptprescribes for each game a set of allocations. In the liter-
ature a solution concept can also assign pay-off vectors that are not efficient,
but here we will assume that all vectors prescribed by some solution concept
are allocations.

The choice for a specific solution concept depends on the notion of “fairness”
that has been specified within the decision model. Examples of solution con-
cepts that might suggest more than one allocation are the core (Gillies [1959])
and the kernel (Davis and Maschler [1965]). A solution concept that suggests
at most one allocation for each game is called avalue. Well-known values are
the Shapley value (Shapley [1953]) and the nucleolus (Schmeidler [1969]).

Example 1.1 Bankruptcy game(O’Neill [1982])
Consider a situation where a company becomes a bankrupt and some cred-
itors bring in a number of claims. The question here is how to divide the
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available amount left by the company among the creditors. This situation can
be modeled as a cooperative game (N; v). N is the set of creditors and the
characteristic functionv is given by

v.S/ :=max{0; E−
∑

i∈N\S
di} for all S⊆ N;

wheredi is the claim of creditori ∈ N andE<
∑

i∈N di denotes the available
amount left by the company. A valuev.S/ can be interpreted as a lower bound
of the amount that the players in a coalitionS⊆ N will receive if they do not
protest against the claims of players outsideS. A solution concept provides
for one or more possible distributions ofv.N/ = E among the creditors. �

1.2 Discrete optimization

In a generaldiscrete optimization problemwe have to optimize anobjective
function over a certain set called the(feasible) solution set. This set can
be described by (in)equality constraints and integrality restrictions on some
or all of the variables. For a survey on discrete optimization we refer to the
books of Nemhauser and Wolsey [1999], Papadimitriou and Steiglitz [1982]
and Schrijver [1986].

An important aspect of a solution method for an optimization problem is its
computational complexity. In this section we briefly go into the main con-
cepts of complexity theory. More extended descriptions of these concepts can
be found in the books mentioned above and also in the book of Garey and
Johnson [1979].

Assume that we have a solution setSand objective functionf : S→ R. Then
the general optimization problem is

find a feasible solution̄s∈ Ssuch thatf .s̄/ = max{ f .s/ | s∈ S}:

The associateddecision problemis

Given f ∗ ∈ R; is there a solutions∈ Ssuch thatf .s/ ≥ f ∗?

So a decision problem is a question that has to be answered only by “yes” or
“no”. Clearly, every solution method that solves the optimization problem can
be used to solve the associated decision problem. For adiscreteoptimization
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problem very often also the opposite is true: If one can solve the decision
problem efficiently, then one can solve the corresponding optimization prob-
lem efficiently. For this reason, the theory of complexity deals in the first
place with decision problems.

An instanceof an optimization problem is a set of data that is obtained when
all the parameters that define the problem are fixed. Analgorithm is a list
of instructions that solves every instance of a problem in a finite number of
steps. So the output of an algorithm is “yes” in case there is a solution and
“no” otherwise.

Example 1.2 EXACT 3-COVER (X3C)

Instance: A finite setW with 3q elements and a collectionU containingk≥ q
3-element subsets ofW.

Question: DoesU contain anexact coverfor W, i.e., is there a subcollection
U ′ ⊆ U such that every element ofW occurs in exactly one member ofU′?

Determining the size of a minimum cover that contains every element ofW is
the associated (discrete) optimization problem. �

We assume that every instance is described as a string in a binary encoding.
Thesize of a problem instanceis the length of the encoding, i.e., the number
of bits necessary to represent the instance. We denote the size of a rational
number a∈Q by< a>. For example, the size of a linear inequalityax≤ b,
wherea andb are rational numbers, is equal to 1+ < a> + < b>, and the
size of a vectorx∈ Qn is equal ton+ < x1 > + < x2 > + : : :+ < xn >.

Because we want to obtain a general classification of problems, we assume
that every algorithm runs on the same machine, the so-called Turing machine,
and we measure thecomputation timeof an algorithm by its number of per-
formed elementary operations (additions, multiplications, comparisons etc.).

The running time t.¾/ of an algorithm is defined as the maximum (computa-
tion) time required to solve any problem instance with size¾. In this way we
have an absolute guarantee on the time required to solve an instance indepen-
dent of any probability distribution of the instances.

An algorithm is said to be apolynomial time algorithmor efficient if its
running timet.¾/ is bounded by a polynomial in¾, i.e, if for all ¾ ∈N; t.¾/=
O.¾p/ for some fixedp∈ N. (For two functionsf : N→ R+ andg : N→ R+
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we write f .n/ =O.g.n// if there exists positive numbersc;n0 ∈ N such that
f .n/ ≤ cg.n/ for n≥ n0.)

Decision problems that are solvable in polynomial time are considered to be
“easy”. The class of these problems is denoted byP. P includes for exam-
ple the minimum spanning tree problem and the weighted matching problem.
Also several game theoretic problems such as computing the nucleolus of con-
vex games (Kuipers [1996]) or computing the nucleolus of assignment games
(Solymosi and Raghavan [1994]) can be solved efficiently.

An algorithm is said to be anexponential time algorithmif for all ¾ ∈N; t.¾/=
O.2¾p

/ for some fixedp ∈ N. The class of decision problems solvable in
exponential time is denoted byEX P. Most discrete optimization problems
belong to this class.

If a problem is inEX P\P, then solving large instances of this problem will
be difficult. However, for a lot of problems it is not known whether they are
in EX P\P or in P. X3C is an example of such a problem: No polynomial
time algorithm for X3C is known, and until so far X3C has not been proven
to be inEX P\P either. It is common believe that these kind of problems do
not belong toP. Moreover, some of these problems can be considered to be
“harder” than others. In order to make a more specific distinction the classes
NP ⊆ EX PandNP-complete⊆ NP are introduced.

NP is the class of decision problems that can be solved by a so-callednon-
deterministic algorithm. Such an algorithm consists of a guessing stage and
a checking stage. In the first stage one guesses a solution and in the second
stage the algorithm checks if this solution satisfies the problem conditions. If
the checking stage can be done in polynomial time (with respect to the size of
the instance in the guessing stage), then the problem is said to be inNP. X3C
is an example of a decision problem that is a member ofNP. A polynomial
nondeterministic algorithm for X3C would be:

guessing stage: guess a subcollectionU ′ ⊆ U (of q elements).

checking stage: IfU ′ is an exact cover, then output “yes”;
otherwise return.

ObviouslyP ⊆ NP holds. It is widely assumed thatP = NP is very un-
likely. The classNP contains a subclass of problems that are considered to
be the hardest problems inNP. These problems are calledNP-complete
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problems. They have the following property: If one can prove that anNP-
complete problem is a member ofP, thenP = NP holds. The technique
used here is that of polynomially transforming one problem into another. A
decision problem51 is polynomially transformableto a decision problem52

if there exists an algorithm that for every instance¦1 of 51 produces inpoly-
nomial timeexactly one instance¦2 of 52 such that the following holds:

the answer for¦1 is “yes” if and only if the answer of¦2 for “yes”.

This means that a polynomial time algorithmA for 52 can also be used to
solve an instance of51 efficiently: First polynomially transformate51 into
52 and then useA.

Definition 1.2 A decision problem5 is calledNP-completeif 5 is inNP
and all other decision problems inNP can be polynomially transformed to
5. �

Note that polynomial transformability is a transitive relation. If51 is polyno-
mially transformable to52 and52 is polynomially transformable to53, then
51 is polynomially transformable to53. ClearlyP = NP must hold if one
can prove for anyNP-complete problem to be inP. If we want to prove that
a decision problem5 isNP-complete, then we only have to show that

(i) 5 is inNP.

(ii) Some decision problem already known to beNP-complete can be poly-
nomially transformed to5.

Our example X3C is one of the six basicNP-complete problems in Garey
and Johnson [1979]. The first problem proven to beNP-complete is the sat-
isfiability problem (Cook [1971]). Other well-knownNP-complete problems
are the traveling salesman problem and Hamiltonian cycle. Some examples
of NP-complete problems in game theory are: deciding whether the core of
a minimum coloring game is empty or not (Deng, Ibaraki and Nagamochi
[1999]) and testing membership in the core of minimum cost spanning tree
games (Faigle, Kern, Fekete and Hochst¨attler [1997]).

Another technique that is used for proving that a problem can be solved in
polynomial time in case another problem can is polynomial reduction: Sup-
pose we have two problems51 and52 not necessarily decision problems.
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A polynomial reductionfrom51 to52 is an algorithmA1 for 51 that uses
an algorithmA2 for 52 as a subroutine and that would be a polynomial time
algorithm for51 if A2 were a polynomial time algorithm for52. This is a
more general technique than polynomial transformation, which can be seen
as a special case of reduction in which the subroutineA2 is used only once.

Definition 1.3 An optimization problem5 is calledNP-hard if there exists
an N P-complete decision problem that can be polynomially reduced to5. �

Note that this definition includes all optimization problems for which the as-
sociated decision problem isNP-complete. In particular, (the optimization
version of) X3C isNP-hard. Polynomially reducibility is a transitive rela-
tion. Therefore, in order to proveNP-hardness for some problem it suffices
to show that a knownNP-hard problem can be reduced to it. SomeNP-
hardness results in game theory are computing the nucleolus of minimum cost
spanning tree games ( Faigle, Kern and Kuipers [1998a]) and computing the
Shapley value in weighted majority games (Deng and Papadimitriou [1994]).

1.3 Polyhedral theory

The theory we discuss in this section is derived from the the books of Schrijver
[1986] and Gr¨otschel, Lovász and Schrijver [1993].

Consider a set of pointsX = {x1; : : : ; xk} ⊆ Rn and a vector½ ∈ Rk. The
linear combinationx =∑k

i=1½i xi is an affine combinationif
∑k

i=1½i = 1,
and x is called a convex combinationif besides

∑k
i=1½i = 1; ½ ≥ 0. X is

called linearly (affinely) independentif no point xi ∈ X can be written as a
linear (affine) combination of the other points inX.

A subsetS⊆ Rn is convexif for every finite number of pointsx1; : : : ; xk ∈ S
any convex combination of these points is a member ofS.

A nonempty setC⊆Rn is called aconvex coneif ½x+¼y∈C for all x; y∈C
and for all real numbers½;¼ ≥ 0.

A convex setP⊆ Rn is apolyhedronif there exists anm× n matrix A and a
vectorb∈ Rm such that

P= P.A;b/ = {x∈ Rn | Ax≤ b}:

We call Ax≤ b asystem of linear inequalities.
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A polyhedronP ⊆ Rn is boundedif there exist vectorsl ;u ∈ Rn such that
l ≤ x≤ u for all x∈ P. A bounded polyhedron is called apolytope.

For our purposes, only rational polyhedra are of interest. A polyhedron is
rational if it is the solution set of a systemAx≤ b of linear inequalities, where
A andb are rational. A rational polyhedronP ⊆ Rn is said to havefacet
complexity at most', if there exists a systemAx≤ b of linear inequalities
with rational coefficients that hasP as its solution set and such that the size
of each inequality of the system is at most'. From now on we will implicitly
assume a polyhedron to be rational.

A point x ∈ P is called avertexof P if x cannot be written as a convex
combination of other points inP. The following theorem presents a tight
upper bound on the size of a vertex.

Theorem 1.1 Let P⊆ Rn be a polyhedron with facet complexity at most'.
Then each vertex has size polynomially bounded byO.n2'/. �

Thedimensionof a polyhedronP⊆ Rn is equal to the maximum number of
affinely independent points inP minus 1. An implicit equalityof the system
Ax≤ b is an inequality

∑n
j=1 aij xj ≤ bi of that system such that

∑n
j=1 aij xj =

bi for all vectorsx ∈ P.A;b/. For Ax≤ b we denote the (sub)system of
implicit equalities byA=x ≤ b=. Let rank(A) denote therank of a matrix,
i.e., the maximum number of linearly independent row vectors. We have the
following standard result.

Theorem 1.2 The dimension of a polyhedron P.A;b/ ⊆ Rn is equal to n−
rank.A=/. �

A subsetH ⊆ Rn is called ahyperplaneif there exists a vectorh ∈ Rn and a
numberÞ ∈ R such that

H = {x∈ Rn | hTx= Þ}:
A separating hyperplanefor a convex setSand vectorx =∈ S is a hyperplane
given by a vectorh∈ Rn and a numberÞ ∈ R such thathTx≤ Þ andhT y> Þ
holds for ally∈ S.

Theseparation problemfor a polyhedronP⊆ Rn is, given a vectorx ∈ Rn,
to decide whetherx∈ P or not, and, ifx =∈ P, to find a separating hyperplane
for P andx. A separation algorithmfor a polyhedronP is an algorithm that
solves the separation problem forP.
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Linear programming(LP) deals with maximizing or minimizing a linear func-
tion over a polyhedron. IfP⊆ Rn is a polyhedron andd ∈ Rn, then we call
the optimization problem

.LP/ max{dTx | x∈ P}

a linear program. A vectorx ∈ P is called a feasible solutionof the linear
program andx∗ is called anoptimal solutionif x∗ is feasible anddTx∗ ≥ dTx
for all feasible solutionsx. If for all x ∈ P a solutionx∗ ∈ P exists with
dTx∗ > dTx, then (LP) is unbounded. If ( LP) has no optimal solution then it
is either infeasible or unbounded.

Khachiyan [1979] showed that LP can be solved in polynomial time by means
of the ellipsoid method. Gr¨otschel, Lovász and Schrijver [1981] refined this
method in such a way that the computational complexity of optimizing a linear
function over a convex setS depends on the complexity of the separation
problem forS. If the convex set is a polyhedron, this can be stated as follows
(see also Gr¨otschel, Lovász and Schrijver [1993]):

Theorem 1.3 There exists an algorithm ELL and a polynomial p in two vari-
ables n and' such that the following holds:

For each polyhedron P⊆ Rn with facet complexity at most' for which there
exists a separation algorithm SEP; ELL solves the linear program

max{dTx | x∈ P}

in time bounded by a polynomial in n; ';< d>; and T, where T is the maxi-
mum time required by SEP on input vectors x of size p.n; '/. �

Here, “solving a linear program” not only means finding an optimal solution,
but it also means detecting the cases in which the linear program is infeasible
or unbounded.

Now assume that for a polyhedronP ⊆ Rn with facet complexity at most
' a separation algorithmSEPexists that solves on inputsx the separation
problem for P in time bounded by a polynomial inn; ' and< x >. Then
from Theorem 1.3 it follows immediately thatELL solves the linear program
max{dTx | x∈ P} in time bounded by a polynomial inn; '; and< d>.

Remark 1.1 For any polyhedronP, by definition, a linear systemAx≤ b
exists such thatP= P.A;b/. In practice this description may be unknown
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or consists of too many inequalities. Theorem 1.3 shows that this is not a
problem as long as the facet complexity ofP is low and an efficient separation
algorithm for P is known. Moreover, in that case the running time ofELL
only depends on the size but not on the number of inequalities definingP. �

1.4 Graph theory

The games we study can be represented by graphs. We associate a cooper-
ative game (N; v) with some graphG in the following way: The player set
N is the node set ofG and the value of a coalitionv.S/ is determined as the
value of a discrete optimization problem onG (e.g., the weight of a maxi-
mum matching). In this section we include some terminology for readers not
familiar with graph theory. For more on graph theory we refer to the book of
Bondy and Murty [1976].

A graph Gis an ordered pair.V; E/, whereV is a nonempty, finite set called
thenode setandE is a set of (unordered) pairs (i; j) with i; j ∈ V called the
edge set. If another graphG′ has been defined we writeG′.V/ andG′.E/ to
make a distinction.

The elements ofV are callednodesand the elements ofE are callededges. If
e= .i; j/ ∈ E we say that nodei and nodej are adjacent. In such a casei and
j are called theend pointsof e or incidentwith e. Furthermore, we say thate
is incidentwith i and j, and a subsetE′ ⊆ E of edges is said tocoverthe set
of nodes incident with some edge inE′. A node j for which there is an edge
.i; j/ ∈ E is aneighborof i. The number of neighbors of a nodei is called
thedegreeof i and denoted byŽ.i / and a node with no neighbors is called an
isolated node. Two edges are calledadjacentif they have a common incident
node.

A multigraphis a graph with possibly more than one edge between two nodes.

We speak of aweightedgraph if aweight functionw : E→ R is defined
on the edge setE of a graphG. The numberw.e/ is theweightof an edge
e∈ E. (It can usually be interpreted as a certain profit or cost.) Theweight of
a subset E′ ⊆ E is equal to the sum of the weights of its edges and denoted
byw.E′/.

A complete graphis a graph with an edge between every pair of nodes. The
complete graph onn nodes is denoted byKn.
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A graphG is a bipartite graphwith node classes V1 andV2 if V = V1∪ V2;

V1∩ V2 = ∅ and each edge joins a node ofV1 to a node ofV2.

A subgraphof G is a graphG′ = .V′; E′/ with V′ ⊆ V and E′ ⊆ E. G′

is called the induced subgraph byV′, denoted byG|V′ , if E′ = {.i; j/ ∈
E | i; j ∈ V′}. If V′ ⊆ V then we letG\V′ denote the graph obtained by
removingV′ (and the edges incident with nodes inV′). If E′ ⊆ E thenG\E′
denotes the graph obtained by removing the edges inE′. We say that a graph
G containsa graphG′ if G hasG′ as subgraph.

A path from i to j is a graphP = .V; E/ with a node set that can be or-
dered asv0; : : : ; vn with v0 = i andvn = j such thatE = {.vk; vk+1/ | k =
0; : : : ;n− 1}. The nodesi and j are called theend pointsof the path andn
is thelengthof the path. We also writeP= v0v1 : : : vn.

A cycle is a graph for which the node set can be ordered asv0; : : : ; vn such
that E= {.vk; vk+1/ | k= 0; : : : ;n− 1} ∪ {.vn; v0/}. We denote a cycle on
n nodes byCn.

A graphG is called connectedif G contains a path fromi to j for each two
nodesi; j ∈ V. A component G′ of G is a maximal connected subgraph of
G, i.e., if Ĝ is a connected subgraph ofG andG′ is a subgraph ofĜ, then
Ĝ= G′. Thesize of a componentis its number of nodes. We denote the size
of a componentG′ by |G′|. A component is calledevenor odd if it has an
even respectively odd number of nodes.

A treeis a connected graphT that does not contain any cycle. A nodei ∈ V is
called aleaf of a treeT = .V; E/, if i has exactly one neighbor. Aforestis a
graph (not necessarily connected) that does not contain any cycle. Aspanning
treeof G= .V; E/ is a tree.V′; E′/ with V′ = V.

A matchingin a graphG= .V; E/ is a subsetM of E such that no two edges
in M have a common end point. A matchingM matchesa subsetV1 into V2,
if each edge inM is incident with a node inV1 and a node inV2.

A node coverin a graphG= .V; E/ is a subsetV′ of V such that every edge
in E is incident with a node inV′.

If the pairs.i; j/ in the edge set of a graph are ordered, then we speak of a
directed graphor digraphand we call such an ordered pair.i; j/ an arc. In
this case the edge set is usually denoted byA. If a= .i; j/ is an arc, then node
i is called the tail t.a/ of a and j is called thehead h.a/ of a. The arca is
an outcoming arcof nodei and is anincoming arcof node j. Theoutdegree
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of a nodei, denoted byŽ+.i /, is the number of outcoming arcs ofi, and the
indegreeŽ−.i / is the number of incoming arcs ofi.

A network.G; l ;u/ is a directed graphG = .V; A/ with two distinguished
nodess andt and two functionsl : A→ R+ andu : A→ R+ such thatl .a/ ≤
u.a/ for all a∈ A. s is called thesourceandt is called thesink. l is thelower
capacity functionandu is called theupper capacity function. l .a/ andu.a/
are respectively thelower andupper capacityof arca∈ A.

A flow from s to t in a network.G; l ;u/ is a function f : A→ R such that for
all i ∈ V\{s; t} ∑

t.a/=i

f .a/ =
∑

h.a/=i

f .a/:

A flow f is called feasibleif for all a ∈ A l.a/ ≤ f .a/ ≤ u.a/. The fol-
lowing standard result can be deduced from the Hoffman-Kruskal theorem
(Hoffman and Kruskal [1956]).

Theorem 1.4 Let .G; l ;u/ be a network with integral capacities l and u.
Then there exists an integral feasible flow for.G; l ;u/, if there exists a feasi-
ble flow for.G; l ;u/. �

1.5 Outline of the thesis

The usefulness of a solution concept is not only determined by its modeling
adequacy but also by its computational complexity. In this thesis we study
the complexity of several solution concepts with respect to various classes of
cooperative games.

In Chapter 2 we discuss a number of solution concepts for cooperative games,
in particular the core and the nucleolus. Furthermore, we describe some least
core concepts and variants of the nucleolus like the nucleon and the per-capita
nucleolus.

Chapter 3 concentrates on minimum cost spanning tree games. Various least
core concepts, including the classical least core, are analyzed. By a reduction
from minimum cover problems we prove that computing an element in these
least cores isNP-hard for minimum cost spanning tree games. As a conse-
quence, computing the nucleolus, the nucleon and the per-capita nucleolus of
minimum cost spanning tree games is alsoNP-hard.
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Chapter 4 deals with matching games. In particular, we study cardinality
games and a generalization thereof (node matching games). We show that the
nucleolus and hence elements in the least core of such games can be computed
efficiently. The case of general (weighted) matching games remains open.

In Chapter 5 we study complexity aspects of sports competitions like national
football leagues and related games. The central problem is the so-calledelim-
ination problem, i.e., to determine at a given intermediate state of the compe-
tition whether a particular team still has a chance of winning the competition.
Our main result states that the new FIFA-rules (3 : 0 for a win) have compli-
cated this problem considerably. We completely characterize the complexity
of this problem and relate it to the core complexity of a corresponding game.





Chapter 2

Solution concepts for cooperative
games

Recall that a solution concept8 prescribes a set8.N; v/⊆ RN of allocations
for any cooperative game (N; v). In Section 2.1 we treat some elementary
properties that a solution concept might have. The choice for a particular
solution concept depends on the “fairness” of its properties with respect to
the specific game one considers. We also make some general statements on
the computational complexity of solution concepts in this section. Section 2.2
deals with the core and the least core of a game. The nucleolus is discussed
in Section 2.3. In Section 2.4 we generalize the concepts of the previous two
sections resulting in thef -least core and thef -nucleolus (special cases: the
nucleon and the per-capita nucleolus). We end the chapter with a description
of the Shapley value of a game (Section 2.5).

2.1 Solution concepts: properties and complexity

Let (N; v) be a cooperative game. An allocationx ∈ RN is said to be an
imputationor individually rational if xi ≥ v.i / for all i ∈ N. An imputation
allocates to each playeri ∈ N at least the amount thati can receive on his
own. Note that this definition is related to a profit game. In case of a cost
game one has to reverse the inequalities (xi ≤ c.i /). The set of imputations
for a game.N; v/ is denoted byI .N; v/.

I .N; v/ = {x∈ RN | x.N/ = v.N/ ; xi ≥ v.i / for all i ∈ N}:

15
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Obviously,I .N; v/ is nonempty if and only if
∑

i∈N v.i / ≤ v.N/. The set of
allocations orpre-imputationsfor a game (N; v) is denoted byI ∗.N; v/.

I ∗.N; v/ = {x∈ RN | x.N/ = v.N/}:

In the rest of this chapter we mainly consider profit games, but the same the-
ory can be applied to cost games. In that case some definitions have to be
adjusted (more or less trivially by reversing some inequalities). In the lit-
erature sometimes the notions anti-core and anti-nucleolus are used, if one
considers a cost game. Here we will still speak of the core and nucleolus of a
cost game.

Below we summarize a number of elementary properties or axioms for a solu-
tion concept8 defined on a classG of cooperative games (see, e.g., Driessen
[1991]). We use the following notations: IfX is a subset ofRN and½ ∈ R,
then the set½X is equal to{½x | x∈ X}. If Y is also a subset ofRN, then the
setX+Y denotes the sum ofX andY, i.e., X+Y= {x+ y | x∈ X; y∈ Y}.

� Individual rationality (Ind)
A solution concept8 is called individually rational if for all games
.N; v/ ∈ G and allx∈ 8.N; v/ x is individually rational.

� Nonemptiness (Non)
A solution concept8 has this property, if for all games (N; v/ ∈ G

8.N; v/ 6= ∅:

� Dummy player property (Dum)
A player i ∈ N is called adummyin a game (N; v) if v.S/− v.S\i / =
v.i / for all S⊆ N with i ∈ S. A solution concept8 has the dummy
player property if for all games.N; v/ ∈ G, all dummy playersi ∈ N,
and allx∈ 8.N; v/

xi = v.i /:

According to a solution concept that satisfiesDum, a dummy player
receives exactly the amount that he contributes to every coalition.

� Symmetry (Sym)
Let ³ : N → N be a permutation. The game (N; v³/ is given by
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v³.³.S// = v.S/ for all S⊆ N. For any vectorx ∈ RN let the vec-
tor x³ be given byx³³.i/ = xi for all i ∈ N. For any setX ⊆ RN; X³

defines the set

{y∈ RN | y= x³ for somex∈ X}:

A solution concept8 is symmetric if for all games (N; v/ ∈ G and all
permutations³ : N→ N

8.N; v³/ = 8.N; v/³:
A symmetric solution concept is not influenced by renumbering of the
player set.

� Invariance (Inv)
Let .N; v/ ∈ G. Let ½ ∈ R anda∈ RN. The game (N; ½v+ a) is given
by .½v+ a/.S/= ½v.S/+ a.S/ for all S⊆ N. A solution concept8 is
called invariant if for all games.N; v/ ∈ G, all ½ ∈ R, and alla ∈ RN

8.N; ½v+ a/ = ½8.N; v/+ {a}:

� Additivity (Add)
Let .N; v/; .N; w/∈ G. The game (N; v+w) is given by.v+w/.S/=
v.S/+w.S/ for all S⊆ N. A solution concept8 is additive if for all
games.N; v/ ∈ G and all.N; w/ ∈ G

8.N; v+w/ = 8.N; v/+8.N; w/:

A singleton is a set that contains exactly one element. In the previous chapter
we have stated that a solution concept that prescribes at most one allocation
for a game.N; v/ ∈ G is called a value. If a value8.N; v/ of a game (N; v)
is nonempty, then we write, as a shorthand notation,8.N; v/ not only to
indicate the singleton but also to indicate the allocation itself.

This thesis in particular studies classes of games, where each game (N; v)
can be presented “implicitly” in terms of a(weighted) discrete structurefrom
which we can derive the coalition values. More precisely, (N; v) will be de-
fined by a pair (G; w), whereG is a graph with node setV = N, andw is a
weight function defined on the nodes and/or edges ofG. Given a coalition
S⊆ V we can computev.S/ by solving a (mostly easy) discrete optimization
problem corresponding withS (cf. also Bilbao [2000]).
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Example 2.1 Let G = .N; E/ be a graph with node setN and edge setE.
Letw : E→ R+ be a weight function defined onE. For S⊆ N we denote the
set of edges joining nodes ofSby E.S/. We define a cooperative game (N; v)
with characteristic functionv given by

v.S/ =
∑

e∈E.S/

w.e/ for all S⊆ N:

�

We assume that thev-values we derive from the underlying discrete structure
.G; w) have size polynomially bounded in the size of the structure. Hence
to any game (N; v) in our class we may associate asize< N; v >, which is
polynomially bounded in the size of the underlying structure and at the same
time is an upper bound for the size of anyv-valuev.S/.

Example 2.2 In Example 2.1 we may define< N; v >= |N|2 < w >, where
< w >=max{< w.e/ > | e∈ E}. �

Now consider an algorithmA that on input (N; v) (obtained from a discrete
structure (G; w)) computes one or more allocations according to a solution
concept8. ThenA is a polynomial time algorithm if its running time is
polynomially bounded in< N; v >.

2.2 The core and least core

Thecoreof a game is the most fundamental solution concept within coopera-
tive game theory. The idea of the core essentially goes back to Von Neumann
and Morgenstern [1944] and Ransmeier [1942]. The core was first introduced
and named in Gillies [1959].

Definition 2.1 Thecoreof a game (N; v) is the following set of allocations:

core.N; v/ := {x∈ RN | x.N/ = v.N/; x.S/ ≥ v.S/ for all ∅ 6= S 6= N}:

�

A vector x ∈ core.N; v/ is said to be acore allocation. A core allocationx
guarantees each coalitionS⊆ N to be satisfied in the sense that it gets at least
what it could gain on its own. As a solution concept the core satisfiesInd,
SymandInv. Note that the core allocations form a polyhedron inRN.
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A game (N; v) is called superadditiveif

v.S/+ v.T/ ≤ v.S∪ T/ for all S;T ⊆ N; S∩ T = ∅:
In a superadditive game it is very likely that the grand coalitionN will be
formed.

The following example shows that even for a superadditive three-person game
the core can be empty. (Actually this is an example of a matching game on
K3 with unit edge weights, cf. Chapter 4.)

Example 2.3 Consider the player setN = {1;2;3} and letv : 2N → R+ be
given byv.1/ = v.2/ = v.3/ = 0 andv.1;2/ = v.1;3/ = v.2;3/ = v.N/ =
1. If x ∈ R3 were in the core, thenx1+ x2 ≥ 1 andx3 ≥ 0. Together with
x.N/ = 1, this impliesx3 = 0. In the same way we can deducex1 = x2 = 0,
a contradiction. Hence core(N; v) is empty. �

Because many interesting games, such as matching games, may have an empty
core, theadditivež-coreof a game (N; v) has been introduced (Shapley and
Shubik [1966]). For a givenž ∈ R, the additivež-core of (N; v) is the set of
allocations

{x∈ RN | x.N/ = v.N/; x.S/ ≥ v.S/+ ž for all ∅ 6= S 6= N}:

Obviously there exists anž ∈ R such that the additivež-core of (N; v) is
nonempty. If we maximizež under the restriction thatž-core of (N; v) is
nonempty, then we obtain theleast coreof a game (N; v) (Maschler, Peleg
and Shapley [1979]).

Definition 2.2 The least coreof a game (N; v), denoted by leastcore(N; v),
consists of all optimal solutionsx∈ RN of the linear program

.LC/ max ž

s:t: x.S/ ≥ v.S/+ ž .S 6= ∅; N/
x.N/ = v.N/:

�

The least core of a game (N; v) tries to satisfy all coalitions∅ 6= S 6= N as
much as possible. Adding all inequalitiesxi ≥ v.i /+ ž and usingx.N/ =
v.N/ yields the upper bound

ž ≤
v.N/−

∑
i∈N v.i /

|N| :
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Hence (LC) has an optimal valuež∗ . Obviouslyž∗ ≥ 0 if and only if the
core of (N; v) is nonempty. Furthermore, if core(N; v) is nonempty then
leastcore(N; v) ⊆ core.N; v/.

The excessof a coalition∅ 6= S 6= N in a game (N; v) with respect to an
allocationx∈ RN is defined as

e.S; x/ := x.S/− v.S/:

The excesse.S; x/ can be seen as a measure of satisfaction ofSwith respect
to the allocationx. If e.S; x/ < e.T; x/ then coalitionSwill be less satisfied
with allocationx than coalitionT.

Least core allocations are just those allocations that maximize the minimal
excessemin.x/ :=min{e.S; x/ | ∅ 6= S 6= N}:

leastcore.N; v/ = {x∈ RN | x.N/ = v.N/;emin.x/ = ž∗}:

2.3 The nucleolus

If the least core is not yet a single point, one might try to find “the best”
allocation in the least core by further pursuing the idea of maximizing mini-
mum excess: After satisfying the coalitions with the smallest excess as much
as possible, one tries to satisfy coalitions with the second smallest excess as
much as possible and so on.

Given an allocationx ∈ RN, we define theexcess vector�.x/ ∈ R2N−2 by
ordering the 2N − 2 excess valuese.S; x/ in a non-decreasing sequence. A
vectorx∈Rm is said to belexicographically smaller than or equal to y∈Rm,
denoted byx� y, if x= y or there exists a number 1≤ j < n such thatxi = yi

if i ≤ j andxj+1 < yj+1.

Definition 2.3 Thenucleolusof a game (N; v) is the set of imputations{x ∈
I .N; v/ | �.y/ � �.x/ for all y∈ I .N; v/}. �

Note that the nucleolus is the set of allocationsx∈ RN that lexicographically
maximize�.x/ over I .N; v/. If the set of imputations is empty, then the
nucleolus of (N; v) is the empty set. If we lexicographically maximize over
the whole set of allocationsI ∗.N; v/, we obtain theprenucleolusof (N; v).
Both nucleolus and prenucleolus are defined as set valued solution concepts.
However Schmeidler [1969] proved the following:
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Theorem 2.1 Let S⊆ RN be a nonempty convex set. Then the set{x ∈
S | �.y/ � �.x/ for all y ∈ S} consists of exactly one point. �

From this result it follows that the nucleolus prescribes a unique allocation,
if I .N; v/ is nonempty. In that case we denote the nucleolus of (N; v) by
�.N; v/. By the same result also the prenucleolus, which exists for all games
(N; v), is a singleton.

As a solution concept the nucleolus satisfiesInd, Dum, Symand Inv. The
prenucleolus only satisfies the last three properties.

It is immediately clear that computing the nucleolus by explicit lexicographic
optimization of the excess vector is not efficient: In general there are expo-
nentially (in|N|) many different excess values, whereas an efficient procedure
should be polynomial in|N|. The standard procedure for computing the nu-
cleolus proceeds by solving up to|N| linear programs (cf. Maschler, Peleg
and Shapley [1979]). To present it we introduce the following notation: For a
polyhedronP⊆ RN let

Fix P := {S⊆ N | x.S/ = y.S/ for all x; y ∈ P}

denote the set of coalitionsfixedby P. We assume thatI .N; v/ is nonempty
and letF0 := {∅; N}. First consider the linear program

.P1/ max ž

s:t: x.S/ ≥ v.S/+ ž .S =∈ F0/

x ∈ I .N; v/

with optimum valuež1 ∈ R. We let P1.ž/ denote the set of allx ∈ RN such
that .x; ž/ satisfies the constraints of (P1). So core(N; v)= P1.0/. If ž1 ≥ 0,
then leastcore(N; v/ = P1.ž1/.

Now, assume we have determinedP1.ž1/. We then proceed to maximize the
minimal excess on those coalitions that are not already fixed, i.e., we solve

.P2/ max ž

s:t: x ∈ P1.ž1/

x.S/ ≥ v.S/+ ž .S =∈ Fix P1.ž1//:

Clearly (P2) is bounded and feasible. Hence letž2 > ž1 be the optimum value
of (P2). Extending our previous notation in the obvious way, we letP2.ž/
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denote the set of allx ∈ RN satisfying the constraints of (P2) for ž ∈ R. Now
proceed to

.P3/ max ž

s:t: x ∈ P2.ž2/

x.S/ ≥ v.S/+ ž .S =∈ Fix P2.ž2//

etc. until

.Pr / max ž

s:t: x ∈ Pr−1.žr−1/

x.S/ ≥ v.S/+ ž .S =∈ Fix Pr−1.žr−1//

defines a unique solutionx∗ ∈ RN, which is equal to�.N; v/, the nucleolus
of the game. We have obtained this allocation after computing

ž1 < ž2 < : : : < žr

and P1.ž1/ ⊂ P2.ž2/ ⊂ : : : ⊂ Pr.žr / = �.N; v/.
The same procedure can be applied to compute the prenucleolus, for which
we only have to replace the constraintx ∈ I .N; v/ by x ∈ I ∗.N; v/ in the
linear program (P1). If core(N; v) is nonempty thenž1 ≥ 0 and in that case
the nucleolus and the prenucleolus coincide.

We see that in each iteration (implicit) equality constraints are added that are
independent of previous equality constraints. This implies that the feasible
regions of the above sequence of LP’s decrease in dimension. Hence we con-
clude thatr ≤ |N|. So we compute at most|N| different excess values explic-
itly. Note, however, that in each step we have to identify the setFix Pi.ži /.
Furthermore, the number of constraints in each (Pi) remains exponential in
|N|.
The above “Linear Programming approach” to the nucleolus is also interest-
ing from a structural point of view, as it implies a nice bound on the size
< �.N; v/ > of the nucleolus.

Theorem 2.2 The nucleolus of a game (N; v) has size bounded polynomially
in < N; v >.

Proof: LetF0⊂ : : :⊂Fr−1⊆ 2N denote the increasing sequence of fixed sets
in .P1/; : : : ; .Pr /, i.e.,F0 = {∅; N} and

Fi := Fix Pi.ži / .i = 1; : : : ; r − 1/:
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Let the polyhedronP∗ ⊆ Rr+N be defined by

x.N/ = v.N/
xi ≥ v.i / .i ∈ N/
x.S/ ≥ v.S/+ ž̃1 .S =∈ F0/

x.S/ ≥ v.S/+ ž̃2 .S =∈ F1/
...

x.S/ ≥ v.S/+ ž̃r .S =∈ Fr−1/:

Then it is clear that
max{ž̃1 |.ž̃; x/ ∈ P∗} yields ž̃1 = ž1,
max{ž̃2 | .ž̃; x/ ∈ P∗; ž̃1 = ž1} yields ž̃2 = ž2 etc. until
max{ž̃r | .ž̃; x/ ∈ P∗; ž̃1= ž1; : : : ; ž̃r−1= žr−1} has only one solution namely

.ž1; : : : ; žr; x
∗/;

wherex∗ is the nucleolus of (N; v) andž1; : : : ; žr are the optimum values of
.P1/; : : : ; .Pr /.

From the above it is straightforward to see that.ž1; : : : ; žr; x∗/ cannot be
written as a convex combination of other points inP∗. Hence.ž1; : : : ; žr; x∗/
is a vertex ofP∗. As such its size is polynomial in the dimensionr + |N| =
O.|N|/ and the facet complexity (cf. Theorem 1.1). The latter is polynomially
bounded by< N; v >. �

Remark 2.1 From the proof of Theorem 2.2 it is also clear that the size of
the parametersži .i = 1; : : : ; r / is polynomially bounded in< N; v >. �

So if we choose to compute the nucleolus of a game (N; v) by using this
algorithmic procedure, then the only difficulties are

(i) identifying the setsFix Pi.ži / in each iteration step;

(ii) the exponential number of constraints in each (Pi).

In general these difficulties turn out to be hard. No polynomial time al-
gorithms are known for computing the nucleolus in general. For instance,
computing the nucleolus of minimum cost spanning tree games isNP-hard
(Faigle, Kern and Kuipers [1998a]). Granot, Granot and Zhu [1998] study the
complexity of the nucleolus in general. Several (not efficient) algorithms for
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computing the nucleolus in general have been developed (see, e.g., Potters,
Reijnierse and Ansing [1996]). Positive results are known for some particular
classes of games. For instance, there exist efficient algorithms for comput-
ing the nucleolus of standard tree games (Megiddo [1978], Granot, Maschler,
Owen and Zhu [1996]), the nucleolus of convex games (Kuipers [1996]) and
the nucleolus of assignment games(Solymosi and Raghavan [1994]). Further-
more, in Chapter 4 we will show that for a subclass of matching games we can
describe the polyhedra (Pi) by means of a polynomial number of inequalities.
Also for this class of games the nucleolus can be computed efficiently.

2.4 The f -least core and f -nucleolus

In the literature, core relaxations different from the additivež-core have been
studied. Faigle and Kern [1993] propose themultiplicativež-coreof a game
(N; v). Here, thež-correction is directly related to the value v(S). For a given
ž ∈ R, the multiplicativež-core of (N; v) is the set of allocations

{x∈ RN | x.N/ = v.N/; x.S/ ≥ v.S/+ žv.S/ for all ∅ 6= S 6= N}:

Also for the multiplicativež-core of aprofit game(N; v) there exists anž ∈ R
such that the multiplicativež-core is nonempty. For a cost game this does
not need to be true. Consider for example a two-person game (N; c) with
N = {1;2} andc given byc.1/ = c.2/ = 0 andc.N/ = 1. For allž ∈ R the
multiplicativež-core is the set{x ∈ R2 | x1+ x2 = 1; x1; x2 ≤ 0}, which is
empty.

The multiplicative least coreis defined in the same way as the classical least
core, and we generalize as follows:

Definition 2.4 Let f : 2N → R+. Then the f -least coreof a game (N; v) is
the set of allocation vectors that are optimal solutions of the linear program

. f -LC/ max ž

s:t: x.S/ ≥ v.S/+ ž f .S/ .S 6= ∅; N/
x.N/ = v.N/:

Denote this set byf -leastcore(N; v).

If ( f -LC) is unbounded, thenf -leastcore (N; v) is defined to be equal to
core(N; v). If ( f -LC) is infeasible, thenf -leastcore (N; v) is the empty set.

�
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Obviously, the largerf .S/ is for some coalitionS⊂ N, the more decisiveS
is for determining the optimum value of (f -LC). We therefore call a func-
tion f as above apriority function. Note that f ≡ 1 corresponds with the
classical least core andf .S/ = v.S/ for all S⊆ N corresponds with the mul-
tiplicative least core. In case of a cost game a priority functionf is closely re-
lated to the concept of ataxation function: Shapley and Shubik [1966] define
f .S/ = |S| for all S⊆ N and Tijs and Driessen [1986] propose theleast-tax
core, where f .S/ = v.S/−∑i∈Sv.i / for all S⊆ N. Note that for azero-
normalizedgame(N; v) (a game wherev.i / = 0 for all playersi ∈ N) the
least-tax core of (N; v) is equivalent to the multiplicative least core of (N; v).

Motivated by the examples above (and also for computational reasons) we
mainly restrict our attention to priority functionsf that satisfy the following
conditions:

(f1) f depends only on the size and the value of a coalition, i.e.,f is of the
type f̂ : N×R→ R+. For∅ 6= S 6= N we set f .S/ = f̂ .|S|; v.S//.

(f2) For all∅ 6= S 6= N; f .S/ can be computed in time bounded by a poly-
nomial in< N; v >.

Because the empty coalition and the grand coalitionN have already fixed pay-
offs, we can restrict a priority functionf : 2N→ R+ to the set 2N\{∅; N}.
The next example shows that differentf -least cores can prescribe different
allocations. We compute the additive and multiplicative least core for a simple
class of games.

Example 2.4 Suppose we have a situation where a number of persons want
to make a large profitv∗. They can only obtain this profit if they all make a
joint investment, where every personi invests an amountv.i /. We model this
situation by aninvestment game(N; v), wherev is given byv.S/ :=∑i∈Sv.i /
for all S⊂ N andv.N/ = v∗ ≥∑i∈N v.i /. It is straightforward to check that
the additive least core yields the unique allocationx̂∈ RN given by

x̂i = v.i /+
v∗−

∑
i∈N v.i /

|N| ;

while the multiplicative least core prescribes the unique allocationx̃ ∈ RN

given by

x̃i = v∗ v.i /∑
i∈N v.i /

:
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If players are payed according tox̂, then each player receives his own invest-
ment plus an equal share of the amount that is left. If allocation vectorx̃ is
used, then they receive a pay-off relative to their investments. The last rule
seems to be more appropriate. In that case, for example, a playeri ∈ N with
investmentv.i / = 0 is not paid anything. �

If f .S/ > 0 for some coalitionS⊂ N, then we have an upper bound

ž ≤ v.N/− v.S/− v.N\S/
f .S/+ f .N\S/ :

Hence (f -LC) is unbounded if and only iff ≡ 0 on 2N\{∅; N}. Now as-
sume (f -LC) to be feasible and bounded and letž∗f be the optimal value of
( f -LC). Thenž∗f ≥ 0 if and only if core(N; v) is nonempty and the following
proposition is obvious.

Proposition 2.1 If core(N; v) 6= ∅, then

∅ 6= f -leastcore.N; v/ ⊆ core.N; v/ for all f : 2N→ R+:

�

We define thef -excessof a nonempty coalitionS⊂ N with respect to a vector
x∈ RN as the number

ef .S; x/ =


x.S/− v.S/

f .S/
if f .S/ > 0

∞ if f .S/ = 0 andx.S/ ≥ v.S/
−∞ otherwise:

Let ef
min.x/ := min{ef .S; x/ | ∅ 6= S 6= N}. If ( f -LC) has an optimal value

ž∗f , then f -leastcore(N; v) can also be formulated as

f -leastcore.N; v/ = {x∈ RN | x.N/ = v.N/;ef
min.x/ = ž∗f}:

In general, computing an allocation in thef -least core of a game (N; v) im-
plies solving an exponential number of inequalities. However we can obtain
the following result (cf. also Faigle, Kern and Kuipers [1998b]).

Theorem 2.3 Let .N; v/ be a cooperative game, and f: 2N → R+ be a pri-
ority function. Suppose that, for an allocation x∈ RN, a coalition∅ 6= S 6= N
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with ef .S; x/ = ef
min.x/ can be computed in time bounded by a polynomial

in < N; v > and< x >. Then an allocation in f -leastcore(N; v) can be
computed efficiently.

Proof: Let Pf ⊆ RN+1 denote the polyhedron of feasible solutions (x; ž) for
( f -LC). We solve the separation problem forPf as follows: Given.x̃; ž̃/, we
first check whether̃x.N/ = v.N/ is satisfied. Next we compute a coalition
∅ 6= S 6= N such thatef .S; x̃/= ef

min.x̃/. If ef
min.x̃/≥ ž̃, then.x̃; ž̃/ is feasible.

If this is not true, our separating hyperplane is

{.x; ž/ ∈ RN+1 | x.S/− f .S/ž = v.S/}:
By our assumption these computations can be done in time polynomially
bounded in< N; v > and< x̃ >. Furthermore,Pf has facet complexity at
most< N; v > + < f >, where

< f >=max{< f .S/ > | ∅ 6= S 6= N}:
By (f2),< f > is polynomially bounded in< N; v >. Then the result follows
directly from Theorem 1.3. �

If the condition in Theorem 2.3 is satisfied, then we can compute the optimal
value ž∗f of ( f -LC) in polynomial time. Ifž∗f is positive, then the core is
nonempty. Otherwise the game (N; v) has an empty core. So, as a direct
consequence of Theorem 2.3, we can efficiently check whether core(N; v) is
empty or not.

Example 2.5 (see also Faigle, Kern and Kuipers [1998b]) Aconvex gameis
a cost game (N; c) whose characteristic functionc is submodular, i.e.,

c.S∪ T/+ c.S∩ T/ ≤ c.S/+ c.T/ for all S;T ⊆ N:

Let f : 2N → R+ be a priority function. In case of a cost game thef -least
core is defined as the set of optimal solutions of the linear program

. f -LC/ max ž

s:t: x.S/ ≤ c.S/− ž f .S/ .S 6= ∅; N/
x.N/ = c.N/;

and thef -excess of a nonempty coalitionS⊂ N for a given vectorx∈ RN is
given by

ef .S; x/ =


c.S/− x.S/

f .S/
if f .S/ > 0

∞ if f .S/ = 0 andx.S/ ≤ c.S/
−∞ otherwise:
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For f ≡ 1 it is straightforward to check that the excess function

e.:; x/ : 2N\{∅; N} → R

is also submodular. From a standard result in discrete optimization on min-
imizing a submodular function (cf. Gr¨otschel, Lovász and Schrijver [1993])
it follows that computing a coalitionS such thate.S; x/ = emin.x/ can be
done in polynomial time. Hence, by Theorem 2.3 we conclude that we can
efficiently compute an element in the least core of a convex game (N; c). �

Analogously to the introduction of thef -least core for a given priority func-
tion f : 2N → R+ we can extend the notion of the classical nucleolus to the
f -nucleolus. Order the 2N − 2 f -excess valuesef .S; x/ in a non-decreasing
sequence resulting in thef -excess vector� f .x/. The f -nucleolusof (N; v)
is then defined to be the set of all imputationsx ∈ RN that lexicographically
maximize the excess vector� f .x/.

Definition 2.5 The f -nucleolusof a game (N; v) is the set of imputations
{x∈ I .N; v/ | � f .y/ � � f .x/ for all y ∈ I .N; v/}. �

Note that thef -nucleolus for f ≡ 1 corresponds with the (classical) nucle-
olus. In the literature the following examples have already been introduced:
If f is given by f .S/ = v.S/ for all S⊂ N, then the f -nucleolus is called
thenucleon(Faigle, Kern, Fekete and Hochst¨attler [1998]). If f is given by
f .S/ = |S| for all S⊂ N, then the f -nucleolus is called theper-capita nu-
cleolus(see, e.g., Young, Okada and Hashimoto [1982]). Iff only depends
on the size of a coalition, i.e.,f .S/ = f .T/ if |S| = |T| for all coalitions
S;T ⊂ N, then thef -nucleolus coincides with thef -nucleolus of Wallmeier
[1983].

Contrary to the nucleolus, thef -nucleolus of a game (N; v) for some priority
function f 6≡ 1 does not necessarily consist of a single element. The following
example illustrates this for the nucleon.

Example 2.6 Let .N; v/ be a two-person game, whereN = {1;2} andv is
given byv.N/ = 1 andv.1/ = v.2/ = 0. Then the nucleon of.N; v/ is the
set

{x∈ R2 | x1+ x2 = 1; x1; x2 ≥ 0}:

�
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The algorithmic procedure for the nucleolus can also be applied to the general
f -nucleolus. We assumeI .N; v/ to be nonempty and letF0 := {∅; N}. For a
given priority function f : 2N→ R+ we consider the linear program

.Pf
1 / max ž

s:t: x.S/ ≥ v.S/+ ž f .S/ .S =∈ F0/

x ∈ I .N; v/:

If ( Pf
1 / has an empty feasible solution set, then thef -nucleolus of (N; v)

is empty. Otherwise letPf
1 .ž/ denote the set of allx ∈ RN such that.x; ž/

satisfies the constraints of (Pf
1 ). If .Pf

1 / is unbounded, thenf .S/ ≡ 0 and
the f -nucleolus of (N; v) is equal to core.N; v/. Otherwise letž f

1 ∈ R denote
the optimum value of.Pf

1 /. Note that core(N; v)= Pf
1 .0/. Furthermore, if

core(N; v) is nonempty, thenž f
1 ≥ 0; f -leastcore(N; v/= Pf

1 .ž
f
1 / and, as we

shall see, thef -nucleolus of (N; v) is a subset of core(N; v).

In the next iteration we solve

.Pf
2 / max ž

s:t: x ∈ Pf
1 .ž

f
1 /

x.S/ ≥ v.S/+ ž f .S/ .S =∈ Fix Pf
1 .ž

f
1 //:

If .Pf
2 / is unbounded, then thef -nucleolus of (N; v) is equal toPf

1 .ž
f
1 /. Oth-

erwise we have an optimal valuež f
2 > ž

f
1 and we proceed to

.Pf
3 / max ž

s:t: x ∈ Pf
2 .ž

f
2 /

x.S/ ≥ v.S/+ ž f .S/ .S =∈ Fix Pf
2 .ž

f
2 //

etc. until

.Pf
r+1/ max ž

s:t: x ∈ Pf
r .ž

f
r /

x.S/ ≥ v.S/+ ž f .S/ .S =∈ Fix Pf
r .ž

f
r //

is unbounded and thef -nucleolus of (N; v) is equal to the set

Pf
r .ž

f
r / . ⊂ Pf

r−1.ž
f
r−1/ ⊂ : : : ⊂ Pf

1 .ž
f
1 / /:

Note that in Example 2.4 it turns out that the nucleon of an investment game
(N; v) is equal to its multiplicative least core, which contains exactly one allo-
cation. However, Example 2.6 already shows that in general thef -nucleolus
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can consist of more than one vector. Obviously, thef -nucleolus of.N; v/ is a
unique imputation if and only if{i} ∈ Fix Pf

r .ž
f
r / for all i ∈ N. The following

proposition can be of importance for checking this condition.

Proposition 2.2 Let f : 2N → R+ be a priority function and let (N; v/ be a
game with nonempty f -nucleolus. If f.S/ > 0 for a coalition∅ 6= S 6= N then,
in some stage of the computation procedure for the f -nucleolus of (N; v/; S
will be fixed, i.e., S∈ Fix Pf

r .ž
f
r / holds for some r> 0.

Proof: If .Pf
1 / is unbounded thenf ≡ 0 holds. Assume that thef -nucleolus

of (N; v) is the setPf
r .ž

f
r / for somer > 0 andS =∈ Fix Pf

r .ž
f
r / is a coalition

with f .S/ > 0. Let x be an imputation inPf
r .ž

f
r /. With respect to the linear

program.Pf
r+1/ we have

v.N/ = x.N/ = x.S/+ x.N\S/ ≥ v.S/+ ž f .S/+ x.N\S/

implying an upper bound

ž ≤ v.N/− v.S/− x.N\S/
f .S/

;

a contradiction. �

Corollary 2.1 Let f : 2N → R+ be a priority function with f.i / > 0 for all
i ∈ N. If the f -nucleolus of a game (N; v) exists then it is a unique allocation.

�

Examples off -nucleoli satisfying this condition are the (classical) nucleolus
and the per-capita nucleolus.

Corollary 2.2 Let f : 2N → R+ be a priority function with f.S/ = 0 if and
only if c.S/ = 0 for all S⊂ N and let.N; c/ be a cost game with c.N/ > 0.
If the f -nucleolus of (N; c) exists then it is a unique allocation.

Proof: If .Pf
1 / is unbounded thenf .S/ = 0 and thereforec.S/ = 0 for all

S⊂ N. Together withc.N/ > 0 this would imply that thef -nucleolus of
(N; v) is empty.

Now assume that thef -nucleolus of (N; c) is a setPf
r .ž

f
r / containing more

than one vector. Then there exists a playeri ∈ N with {i} =∈ Fix Pf
r .žr /. By

Proposition 2.2,c.i / = 0 must hold. Supposex ∈ Pf
r .ž

f
r /. If N\i is fixed by

Pf
r .ž

f
r / then, becausex.N/ = c.N/; {i} ∈ Fix Pf

r .ž
f
r /, a contradiction. If
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N\i is not fixed then, again by Proposition 2.2,c.N\i / = 0. By our assump-
tion also f .i / = f .N\i / = 0, and we have

c.N/ = xi + x.N\i /
≤ c.i /− ž f

r f .i /+ c.N\i /− ž f
r f .N\i /

= 0;

again a contradiction. �

By this result f -nucleoli, such as the nucleon and thef -nucleolus withf .S/=
c.S/
|S| for all ∅ 6= S 6= N, contain at most one allocation if they are applied to a

cost game.

2.5 The Shapley value

Recall that a value is a solution concept that prescribes at most one allocation
for every game (N; v). Shapley [1953] introduced the following value, which
is nonempty for any game (N; v).

Definition 2.6 The Shapley value�.N; v/ of a game.N; v/ is defined as

�i.N; v/ =
∑

S⊆N\i

|S|!.|N| − |S| − 1/!
|N|!

(
v.S∪ i /− v.S/

)
for all i ∈ N:

�

The Shapley value for a playeri can be interpreted as an expected allocation.
If i joins a coalitionS, then this is rewarded with itsmarginal contribution
v.S∪ i /− v.S/. The probability thati joins a coalition of size|S| is set to 1

|N|

for all sizes 0≤ |S| ≤ |N| − 1 and
(|N|−1
|S|
)−1

for all coalitions of size|S|. This

results in a final probability equal to|S|!.|N|−|S|−1/!
|N|! .

The Shapley value satisfiesNon, Sym, Dum, Add and Inv. Shapley [1953]
even proved a stronger result.

Theorem 2.4 The Shapley value is the unique value that satisfies Sym, Dum
and Add. �
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The Shapley value has been widely studied in the literature (see, e.g., Faigle
and Kern [1992], Evans [1996], Driessen and Paulusma [2001], Sprumont
[1990]). In general one has to compute all valuesv.S/ to obtain�.N; v/.
Hence for most classes of games computing the Shapley value cannot be done
in polynomial time.

The following example shows that�.N; v/ is not necessarily a core vector for
a game (N; v).

Example 2.7 Consider a 3-person game (N; v), whereN = {1;2;3} andv is
given by

v.1/ = 0 v.1;2/ = 2 v.N/ = 5:
v.2/ = 0 v.1;3/ = 3
v.3/ = 0 v.2;3/ = 4

Sincex ∈ R3 given byx1 = 0; x2 = 2 andx3 = 3 is easily seen to be a core-
vector, core(N; v) is nonempty. Computing the Shapley value yields

�1.N; v/ = 7
6
; �2.N; v/ = 10

6
and �3.N; v/ = 13

6
:

�.N; v/ is not in core(N; v), because coalition{2;3} receives23
6 , which is

less thanv.2;3/ = 4. �



Chapter 3

Minimum cost spanning tree
games

In a minimum cost spanning tree game the players are represented by nodes
in a complete graph and the cost of a coalition is equal to the weight of the
corresponding minimum spanning tree. In Section 3.1 we treat some basic
theory on minimum spanning trees of a graph. Next we give the definition of
a minimum cost spanning tree game.

In Section 3.2 we discuss the core of a minimum cost spanning tree game.
Granot and Huberman [1981] prove that these games have a nonempty core
by showing that certain vectors are core members. However, these allocations
may not be acceptable from a modeling point of view, and Granot and Huber-
man [1984] present some ways to construct other core allocations from these
vectors.

In Section 3.3 we study thef -least core of a minimum cost spanning tree
game for various priority functionsf : 2N → R+. This is a more general
approach than the approach followed by Granot and Huberman [1984]. We
prove that for a large class of priority functionsf computing an allocation
in the f -least core of a general minimum cost spanning tree game isNP-
hard. As a consequence also computingf -nucleoli, such as the nucleolus, the
nucleon and the per-capita nucleolus of minimum cost spanning tree games,
is in generalNP-hard.

33
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3.1 Introduction

3.1.1 Minimum spanning trees

Suppose an electricity network is to be built connecting a number of house-
holds to a common power station. Installing an electricity cable between any
two households and between any household and the power station is possible,
but will cost a certain amount. Then the first task is to construct a network
that connects every household to the power station and that has minimal cost.
This example belongs to a class of problems where a number of users must
be connected to a common supplier, and it can be modeled as a minimum
spanning tree problem.

Definition 3.1 Let G= .V; E/ be a connected graph with a positive weight
functionw ≥ 0 defined on the edge set E. Then a minimum spanning tree
(MST) is a spanning tree T∗ of G that has minimal weight, i.e.,

w.E.T∗// = min{w.E.T// | T is a spanning tree of G}:

�

Computing an MST of a graphG= .V; E/ can be done in polynomial time by,
for instance, the algorithm of Kruskal [1956] or the algorithm of Prim [1957].
In the first algorithm an edge with minimal weight is chosen and afterwards
edges with weight as small as possible are added as long as no cycle occurs.
In the end an MST has been constructed.

Algorithm of Kruskal

(1) SetE′ := ∅.
(2) IF |E′| = |V| − 1 THEN outputT = .V; E′/. STOP.

(3) Choose an edgee′ ∈ E\E′ such that

w.e′/ =min{w.e/ | e∈ E\E′ and.V; E′ ∪ e/ does not contain a cycle}:

(4) SetE′ := E′ ∪ {e}. GOTO (2).



3.1 Introduction 35

The second algorithm starts with an arbitrary node inV. From this node it
constructs a tree with minimal weight that will be extended node by node
until it spans the whole graph.

Algorithm of Prim :

(1) SetV′ := {v} for somev ∈ V and setE′ := ∅.
(2) IF V′ = V THEN outputT = .V; E′/. STOP.

(3) Choose an edge.i; j/ ∈ E with i ∈ V′ and j ∈ V\V′ such that

w.i; j/ = min{w.k; l / | .k; l / ∈ E; k ∈ V′; l ∈ V\V′}:

(4) SetV′ := V′ ∪ { j} andE′ := E′ ∪ .i; j/. GOTO (2).

Example 3.1 Consider a complete graphG= .V; E/ on five nodes with weight
function w : E → R+ as indicated in Figure 3.1. The treeT with edges
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.0;1/; .1;3/; .1;4/ and.2;4/ and weightw.T/ = 7 is easily seen to be an
MST of G. This MST is not unique: For instance, the treeT′ with edges
.0;4/; .1;4/; .2;3/ and.2;4/ is also an MST ofG. �
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The following proposition (see, e.g., Aarts [1994]) shows that, given an MST
T of a graphG, each induced subgraph that is connected has an MST that
contains all edges ofT with both end nodes in the induced subgraph.

Proposition 3.1 Let G= .V; E/ be a connected graph. Then for every MST
T of G and every set V′ ⊆ V, for which G|V′ is connected, an MST T′ of G|V′
exists such that

E.T/∩ E.G|V′ / ⊆ E.T′/:

Proof: Use the algorithm of Kruskal to constructT. Suppose that in a certain
stage of this algorithm the edgee′ ∈ E.T/ ∩ E.G|V′ / is added toE′. Since
w.e′/ =min{w.e/ | e∈ E\E′}, we have that

w.e′/ =min{w.e/ | e∈ E.G|V′ /\.E′ ∩ E.G|V′ //}:

Furthermore,.V; E′ ∪ e′/, and therefore.V′; .E′ ∩ E.G|V′ // ∪ e′/, does not
contain any cycle. This means that we can apply the algorithm of Kruskal for
the construction of an MSTT′ of G|V′ in such a way that we first choose the
edges inE.T/ ∩ E.G|V′ /. �

3.1.2 Minimum cost spanning tree games

Consider again the example of an electricity network. After constructing a
network that connects each user to the power station with minimum cost, this
cost has to be divided somehow among the users. Such an allocation problem
can be modeled as a minimum cost spanning tree game.

Definition 3.2 A minimum cost spanning tree game(MCST-game) (N; c) is
determined by a setN of players, asupplynodes =∈ N, a complete graph with
node setV = N∪{s} and by a weight functionw ≥ 0 defined on its edge set.
The costc.S/ of a coalitionS⊆ N is the weight of an MST in the subgraph
induced byS∪ {s}. �

In the definition above we see thatc.N/ is the weight of an MST in the orig-
inal graph, which is exactly the minimum total cost of constructing the net-
work. Because we only consider positive weight functionsw, for any MCST-
game (N; c) we have

c.S/+ c.T/ ≥ c.S∪ T/ for all S;T ⊆ N; S∩ T = ∅:
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So an MCST-game issubadditive, which makes the assumption that all play-
ers decide to work together in order to divide the costc.N/ more likely.

The underlying discrete structure of an MCST-game (N; c) is a complete
graphG and an edge weightingw. Let< w > denote the maximum size of
the edge weights, i.e.,< w >:= max{< w.i; j/ >}. We define< N; c >=
|N| < w >.

A basic observation is now the following. If a nodei ∈ N occurs as a leaf in
some MSTT for G and if e is the unique edge inT incident withi, thenT\e
is an MST for the subgraph induced byV\i. So in this case we immediately
deduce that

c.N\i / = c.N/−w.e/: (3.1)

Example 3.2 Consider again the graphG in Example 3.1. If we assume node
0 to be the supply node then we obtain an MCST-game (N; c), whereN =
{1;2;3;4} andc : 2N→ R+ is given by

c.1/ = 2 c.1;2/ = 4 c.1;2;3/ = 7 c.N/ = 7:
c.2/ = 3 c.1;3/ = 5 c.1;2;4/ = 4
c.3/ = 4 c.1;4/ = 3 c.1;3;4/ = 6
c.4/ = 2 c.2;3/ = 6 c.2;3;4/ = 6

c.2;4/ = 4
c.3;4/ = 6

�

3.2 The core of a minimum cost spanning tree
game

Minimum cost spanning tree problems have been widely studied in the lit-
erature. After their introduction by Bird [1976], various results about the
core and nucleolus were established (see, e.g., Aarts [1994], Faigle, Kern and
Kuipers [1998a], Granot and Huberman [1981], [1984]).

Granot and Huberman [1981] proved the following theorem, which shows that
any MCST-game has a nonempty core and that a core allocation can be found
in polynomial time. A core allocation as defined below is called astandard
core allocation. We denote the standard core allocation corresponding to an
MST T∗ by x∗.
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Theorem 3.1 Let T∗ be a minimum spanning tree belonging to an MCST-
game (N; c). Then the vector x∗ ∈ RN that allocates to player i∈ N the
weight of the first edge i encounters on the (unique) path from i to s in T∗ is a
vertex of core(N; c). �

However, Granot and Huberman [1981] also point out that standard core allo-
cations may not be acceptable from a modeling point of view. The following
example illustrates this.

Example 3.3 Consider an MCST-game (N; c) obtained from a complete graph
G on four nodes with edge weightingw as indicated in Figure 3.2. Clearly,
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the treeT∗ with edges.s;1/; .1;2/ and.1;3/ and weightw.T∗/ = 12 is an
MST of G. The corresponding standard core allocationx∗ is given byx∗1 = 10
andx∗2 = x∗3 = 1. So most of the cost is charged to player 1, although player
2 and 3 highly depend on this player for their connection tos. This motivates
the search for other core allocations such as the vectorx given byx1 = 2 and
x2 = x3 = 5. �

The question arises how to find possibly more appropriate core allocations
and what is the computational complexity of computing these allocations.

Granot and Huberman [1984] propose the following procedure to obtain core
allocations not equal to a standard core allocation: LetT∗ be a minimum
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spanning tree belonging to an MCST-game (N; c) determined by a complete
graphG with node setV = N∪{s} and edge weightingw. Supposei is not a
leaf of T∗. Let Fi.T∗/ denote the set ofimmediate followersof nodei in T∗,
i.e.,

Fi.T
∗/ = { j ∈ N | i is the 1st nodej encounters on the path fromj to s in T∗}:

For all core allocationsx we havex.N/ = c.N/ andx.N\i /≤ c.N\i /. These
constraints imply that according tox∗ ∈ core(N; c) at least an amount of

c.N/− c.N\i /

is charged to nodei. If x∗i > c.N/− c.N\i / then one could try to modify the
standard core allocationx∗ such that nodei pays less, while the immediate
followers of i are charged a higher amount for their connection tos via i.
For this purpose, Granot and Huberman [1984] introduced the so-calledweak
demand operation. This operation can be applied on an arbitrary allocation
x ∈ RN, but here we show only its effect on standard core allocations. For
those allocations the method transfers an amount fromi to Fi.T∗/ in such
a way that the resulting vector is still a core vector and playeri is charged
exactlyc.N/− c.N\i /.
In order to explain the method we have to use Proposition 3.1. By this propo-
sition, there exists an MSTT′ of the subgraph ofG induced byN\i such
that

E.T∗/∩ E.G|N\i/ ⊆ E.T′/: (3.2)

For eachj ∈ Fi.T∗/ there exists an edgeej that is the first edgej encounters
on the unique path fromj to s in T′ that is not an edge inT∗. Then the weak
demand operation applied inT∗ by i on x∗ with respect toT′ yields the vector
x̃∈ RN given by

x̃ j =


c.N/− c.N\i / if j = i
w.ej / if j ∈ Fi.T∗/
x∗j otherwise.

The example below shows that in caseT′ is not the unique tree satisfying (3.2)
the weak demand operation can yield a different vector.

Example 3.4 Let (N; c) be an MCST-game (N; c) obtained from a complete
graphG on five nodes with edge weightingw as indicated in Figure 3.3. The
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treeT∗ with edges.s;1/; .1;3/; .1;4/ and.2;3/ is an MST ofG with weight
w.T∗/ = 5. Thenc.N/ = 5 andx∗ ∈ R4 is the vector.1;2;1;1/.

Node 1 is not a leaf ofT∗ and its set of immediate followersF1.T∗/ is equal
to {3;4}. The treeT′ with edges.s;2/; .2;3/ and.3;4/ is an MST ofG|N\1
with weightw.T′/ = 9. Soc.N\1/ = 9. The weak demand operation by 1
on x∗ with respect toT′ yields the allocatioñx1 = .−4;2;4;3/. Also the tree
T′′ with edges.s;4/; .2;3/ and .3;4/ is an MST ofG|N\1 satisfying (3.2).
Applying the weak demand operation with respect toT′′ yields the allocation
x̃2 = .−4;2;3;4/. �

Note that in Example 3.4 both̃x1 and x̃2 are core allocations. The following
result by Granot and Huberman [1984] states that this holds for all vectors ob-
tained after applying a weak demand operation on a standard core allocation.

Theorem 3.2 Let T∗ be an MST belonging to an MCST-game (N; c/ deter-
mined by a complete graph G with edge weightingw. Let i∈ N, and let T′ be
an MST of GN\i such that

E.T∗/∩ E.G|N\i/ ⊆ E.T′/:

Then the vector̃x ∈ RN obtained by the weak demand operation applied in
T∗ by i on x∗ with respect to T′ is an element in core(N; c). �
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Remark 3.1 From the proof of Proposition 3.1 it is immediately clear that
any weak demand operation can be performed in polynomial time. �

The example below shows that applying the weak demand operation on a stan-
dard core allocationx∗ does not necessarily have to yield a “new” allocation,
which is not again a standard core allocation.

Example 3.5 Let (N; c) be an MCST-game (N; c) obtained from a complete
graphG on three nodes with edge weightingw as indicated in Figure 3.4.
Both T1 with edge setE.T1/ = {.s;1/; .1;2/} andT2 with edge setE.T2/ =

4 4

2
1 2

 s

Figure 3.4

{.s;2/; .1;2/} are minimum spanning trees ofG. The corresponding stan-
dard core allocations arex1 = .4;2/ andx2 = .2;4/. The weak demand op-
eration by 1 onx1 yieldsx2 and the weak demand operation by 2 onx2 yields
x1. �

Besides a weak demand operation, Granot and Huberman [1984] also intro-
duce thestrong demand operation: Let T∗ be a minimum spanning tree be-
longing to an MCST-game (N; c). Fix a certain playeri ∈ N that is not a
leaf in T∗. Then the strong demand operation is a function that assigns to
every allocationx ∈ core(N; c) the setSi.x/ ⊆ core(N; c). This set contains
all allocationsy ∈ core(N; c) that can be obtained by transferring the max-
imal amount fromxi to Fi.T∗/ such that the resulting vector is still a core
allocation. Clearly, an allocatioñx obtained after applying a weak demand
operation byi on x∗ is an element inSi.x∗/. An explicit description of the set
Si.x/ is not known for a general MCST-game. However, in case the MSTT∗

is a path with the supplys as one of its two end points,Si.x/ contains exactly
one point, and Granot and Huberman [1984] were able to give an expression
for this singleton.
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3.3 The f -least core of a minimum cost spanning
tree game

3.3.1 Introduction

In the previous section only new core allocations were obtained from standard
core allocations by transferring a certain amount from one fixed player to
its set of immediate followers. Here we follow a more general approach by
considering thef -least core of an MCST-game (N; c) for a number of priority
functions f 6≡ 0. Recall that thef -least core of a cost game (N; c) is the set
of allocation vectors that are optimal solutions of the linear program

. f -LC/ max ž

s:t: x.S/ ≤ c.S/− ž f .S/ .S 6= ∅; N/
x.N/ = c.N/:

Since core(N; c) is nonempty, by Proposition 2.1 thef -least core of an arbi-
trary priority function f is a nonempty subset of core(N; c).

We are interested in the computational complexity of computing an element in
the f -least core for a priority functionf . First we show that this approach can
be seen as a generalization of the methods described in the previous section.

Let .N; c/ be an MCST-game. Assume that a playeri ∈ N is more important
than the other players, for instance, by its position in the network. We can
express this by a priority functionf i : 2N→ R+ given by

f i.S/ =
{

1 if S= {i}
0 otherwise.

The following proposition gives a characterization of thef i-least core of an
MCST-game.

Proposition 3.2 Let .N; c) be an MCST-game and i∈ N. Then

f i-leastcore.N; c/ = core.N; c/∩ {x∈ RN | xi = c.N/− c.N\i /}:

Proof: Supposex ∈ f i-leastcore(N; c). The feasibility constraintsx.N/ =
c.N/; x.N\i / ≤ c.N\i / together withxi ≤ c.i /− ž yield the upper bound

ž ≤ c.i /+ c.N\i /− c.N/:
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Let ž∗ = c.i /+ c.N\i /− c.N/. Thenž∗ is the optimal value of. f i-LC/, if
we can show that a feasible solution.x; ž∗/ of . f i-LC/ exists.

Now let T∗ be an MST belonging to (N; c). If x∗i = c.N/− c.N\i / we have
x∗i = c.i /− ž∗ and, sincex∗ ∈ core(N; c), x∗.S/≤ c.S/ for all S⊂ N. Other-
wise the vector̃x obtained after applying a weak demand operation by player
i in T∗ on x∗ satisfiesx̃i = c.N/− c.N\i / = c.i /− ž∗, and by Theorem 3.2
x̃ is a member of core(N; c), and thus̃x.S/ ≤ c.S/ for all S⊂ N. Hencež∗ is
the optimal value of. f i-LC/.

Note thatž∗ ≥ 0. By the feasibility constraints of. f i-LC/ an allocationx is
an element inf i-leastcore(N; c) if and only if

xi = c.N/− c.N\i / and x.S/ ≤ c.S/ for all ∅ 6= S 6= N;

which proves the proposition. �

From the proof of Proposition 3.2 it is clear thatSi.x∗/ ⊆ f i-leastcore(N; c)
for any MSTT∗ belonging to (N; c). In particular an allocatioñx ∈ RN ob-
tained after applying a weak demand operation byi on x∗ is an element of
f i-leastcore(N; c). Because such a vector can be computed efficiently (cf.
Remark 3.1), the following corollary holds.

Corollary 3.1 Let (N; c) be an MCST-game and i∈ N. Then computing an
element in fi-leastcore(N; c) can be done in polynomial time. �

In the following we will introduce a class of priority functions for which com-
puting the f -nucleolus isNP-hard. This class contains both the nucleolus
and the nucleon. Below we give an example in which the nucleolus and the
nucleon are computed.

Example 3.6 Consider an MCST-game (N; c) obtained from a complete graph
G = .V; E/ on three nodes and edge weights as defined in Figure 3.5. The
tree T∗ with edges.s;1/ and .1;2/ is an MST ofG and the standard core
allocationx∗ is given byx∗1 = 10 andx∗2 = 1, which may be considered to be
unfair with respect to player 1. Solving the linear program

max ž

s:t: x1+ x2 = 11
x1 ≤ 10− ž
x2 ≤ 11− ž



44 Minimum cost spanning tree games

1

11

10

 s

2

1

Figure 3.5

yields the unique (additive) least core allocationx given byx1= 5 andx2= 6.
Solving the linear program

max ž

s:t: x1+ x2 = 11
x1 ≤ 10− 10ž
x2 ≤ 11− 11ž

yields the unique multiplicative least core allocationy given byy1 = 5 5
21 and

y2 = 516
21. �

In Example 3.3 both the additive and multiplicative least core are equal to the
singleton{.0;6;6/}.
The rest of this chapter is based on Faigle, Kern and Paulusma [2000]. We
will define a class of priority functions, for which computing an element in
the f -least core of an MCST-game (N; c) turns out to beNP-hard. This class
contains priority functionsf such as

� f .S/ = 1 for all ∅ 6= S 6= N
� f .S/ = c.S/ for all ∅ 6= S 6= N
� f .S/ = |S| for all ∅ 6= S 6= N:

The proof uses a reduction from minimum cover problems. We show that
computing a least core allocation for a special class of graphs introduced in
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Faigle, Kern, Fekete and Hochst¨attler [1997] is alreadyNP-hard. These
graphs will be treated in Section 3.3.2. Section 3.3.3 contains the proof of
the theorem. In Section 3.3.4 the functions mentioned above are treated. By
giving sufficient conditions for a priority functionf to satisfy a number of
properties defined in Section 3.3.3, we prove that computing an element in
the f -least core of MCST-games isNP-hard for these functions. Megiddo
[1978] and Granot, Maschler, Owen and Zhu [1996] give a polynomial al-
gorithm for computing the nucleolus in case the underlying graph is not a
complete graph but a tree. Faigle, Kern and Kuipers [1998a] show that com-
puting the nucleolus of a general MCST-game isNP-hard. Here we obtain
this result as an immediate corollary from our main theorem. Also, as a con-
sequence of this result, computing the nucleon and the per-capita nucleolus of
MCST-games is in generalNP-hard.

3.3.2 Minimum cover graphs

In this section we define a minimum cover graph and we show how we can
construct an MCST-game from such a graph.

Let q∈ N, and letU be a set ofk≥ q elements andW be a set of 3q elements.

Consider a bipartite graph with node setU ∪W (partitioned intoU andW)
such that each nodeu ∈ U is adjacent to exactly three nodes inW. We say
that nodeu ∈ U coversits three neighbors inW.

A set D ⊆ U is called acover if eachw ∈ W is incident with someu ∈ D.
A minimum coveris a cover that minimizes|D|. Finding a minimum cover
is a well-knownNP-hard problem. It includes theNP-complete problem
X3C (cf. Example 1.2). Below we show that we may restrict ourselves to a
subclass of minimum cover problems.

Proposition 3.3 Finding a minimum cover under the following assumptions
isNP-hard.

(C1) Each node in W has degree 2 or more.

(C2) The size of a minimum cover is at most q+ 2.

Proof: Supposew ∈W is a node with degree 1,w is connected tou andu is
also connected tow1 andw2. Add a nodeû to U and connect it tow, w1 and
w2. The size of a minimum cover will not change. Hence computing the size
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of a minimum cover, in case (C1) holds, is at least as hard as computing the
size of a minimum cover in the general case.

To show the validity of (C2), add nodesu1;u2; : : : ;uq to U that coverW.
Eachui .i = 1; : : : ;q/ covers exactly 3 nodes inW. Next deleteuq. The size
of a minimum cover will be less than or equal toq+ 2. If the size is greater
thanq, the original problem has no exact cover. If the size of a minimum
cover is equal toq, then also deleteuq−1. Again the size of a minimum cover
will be at mostq+ 2. If the size is greater thanq, the original problem has
no exact cover. If the size is equal toq, also deleteuq−2 and so on. In each
step of the procedure only problems that have a minimum cover with size at
mostq+ 2 are considered. Ifu1 would be deleted, one arrives at the original
problem. Hence computing the size of a minimum cover, in case (C2) holds,
is at least as hard as computing the size of a minimum cover in the general
case. �

From now on we assume that conditions (C1) and (C2) hold. We construct
an MCST-game from a minimum cover problem as follows (cf. Faigle, Kern,
Fekete and Hochst¨attler [1997]). First we define aminimum cover graph G=
.V; E/. The node set ofG consists ofU ∪W and three additional nodes:
TheSteiner node St, theguardian gand the supplys. The edge setE of G
comprises the following (cf. Figure 3.6).

� all edgese from the bipartite graph onU ∪W, each of them having
weightw.e/ = q+ 1;

� for eachu∈U, an edge.u; St/ betweenuandStwith weightw.u; St/=
q and an edge.u; g/ betweenu andg with weightw.u; g/ = q+ 1;

� an edge.St; g/ betweenStandg with weightw.St; g/ = q+ 1;

� an edge.g; s/ betweeng ands with weightw.g; s/ = 2q− 1.

We extendG to the complete graphG on V with weights induced fromG,
i.e., if e= .i; j/ is an edge inG, thenw.i; j/ is the weight of a shortest path
from i to j in G.

An MST in G is obtained by connecting eachw ∈W to someu∈U by which
it is covered. Such au ∈ U exists because each nodew ∈ W has a neighbor
in U (indeed, it has at least 2 neighbors inU). Then one connects eachu∈ U
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Figure 3.6. a minimum cover graph

to St, and finally connectsSt to g andg to s. The resulting MST has a total
weight of

c.N/ = 3q.q+ 1/+ kq+ 3q:

Furthermore, by (C1), eachw ∈ W is covered by at leasttwo nodes inU.
Hence it is straightforward to see that the following property holds forG:

(L ) For eachv ∈ U ∪W, there exists an MSTT in the graphG such thatv
is a leaf ofT.

3.3.3 The f -least core of minimum cover graphs

Consider a graphG = .V; E/ and its completionG as described in the pre-
vious section. Thef -leastcore(N; c), relative to a priority functionf : 2N →
R+, of the corresponding MCST-game consists of all allocation vectors that
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are optimal solutions of the linear program

. f -LC/ max ž

s:t: x.S/ ≤ c.S/− ž f .S/ .S 6= ∅; N/
x.N/ = c.N/:

whereN = V\s andc.S/ is the weight of an MST inG connectingS to the
supplys.

Suppose.x; ž/ is a feasible solution of. f -LC/. Then the feasibility con-
straintsx.N/ = c.N/ andx.N\i / ≤ c.N\i /− ž f .N\i / imply x.i /≥ c.N/−
c.N\i /+ ž f .N\i / for i ∈ N. Hence, by property (L) of the previous section
and (3.1), we have the following inequalities

x.w/ ≥ q+ 1+ ž f .N\w/ .w ∈W/

x.u/ ≥ q+ ž f .N\u/ .u ∈ U/:

Furthermore, the coalitionS= N\g can be connected to the supply nodes at
a total cost ofc.N/. Hence, the feasibility constraints of. f -LC/ also imply

x.g/ ≥ ž f .N\g/ :

This motivates the following definition.

For ž > 0, let xž ∈ RN be the allocation defined by

xž.w/ = q+ 1+ ž f .N\w/ for all w ∈W
xž.u/ = q+ ž f .N\u/ for all u ∈ U
xž.g/ = ž f .N\g/
xž.St/ = c.N/− xž.U ∪W∪ g/:

By condition (f1) from Section 2.3, it is straightforward to check that the
following parameters do not depend on the particular representativew ∈ W
or u ∈ U:

f w := f .N\w/ .w ∈W/

f u := f .N\u/ .u ∈ U/:

Define for a coverD ⊆ U

ž f .D/ = |D|+ 2q− 1
|D| f u+ 3qfw + f .N\g/+ f .D ∪W∪ g/

;



3.3 The f -least core of a minimum cost spanning tree game 49

and let

ž f = min{ž f .D/ | D ⊆ U coversW}:

To make sure thatž f is finite we assume thatf .S/ > 0 whenever|S| > 0 and
c.S/ > 0.

Remark 3.2 SupposeD ⊆ U is a cover and consider the coalitionS= D ∪
W∪{g}. The costc.S/ is easily seen to bec.S/= 3q.q+ 1/+ |D|.q+ 1/+
2q−1, i.e.,c.S/ only depends on|D|. Then, by (f1), alsof .S/ and, therefore
ž f .D/ only depends on|D|, i.e., satisfiesž f .D1/ = ž f .D2/ if |D1| = |D2|
for all coversD1; D2 ⊆ U. As a consequence, we can a priori compute all
possible values ofž f .D/ for |D| ranging fromq to k. �

Lemma 3.1 If ž∗ is the optimal value of. f -LC/ thenž∗ ≤ ž f .

Proof: Let .x; ž∗/ be an optimal solution of. f -LC/. As we have seen, the
feasibility constraints imply

x.w/ ≥ q+ 1+ ž∗ f w .w ∈W/

x.u/ ≥ q+ ž∗ f u .u ∈ U/
x.g/ ≥ ž∗ f .N\g/:

SupposeD ⊆ U is a cover for whichž f .D/ = ž f . Consider the coalition
S= {g} ∪ D∪W. Then

x.S/ ≥ ž∗ f .N\g/+ |D|q+ ž∗|D| f u+ 3q.q+ 1/+ ž∗3qfw

whereas,

c.S/ = 3q.q+ 1/+ |D|.q+ 1/+ 2q− 1:

Sincex.S/ ≤ c.S/− ž∗ f .S/, we get

ž∗ ≤ |D|+ 2q− 1
|D| f u+ 3qfw + f .N\g/+ f .D ∪W∪ g/

= ž f :

�

We call a priority functionf : 2N → R+ feasibleif f satisfies the following
properties (with respect to MCST-games on minimum cover graphs):
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(P1) ž f is the optimal value of. f -LC/.

(P2) For a coverD ⊆ U of sizeq≤ |D| ≤ q+ 2, we have

ž f = ž f .D/ if and only if D ⊆ U is a minimum cover.

Our main result can be formulated as follows:

Theorem 3.3 For the class of feasible priority functions, the problem of com-
puting an allocation vector x∈ f -leastcore(N; c) of MCST-games isNP-
hard.

Proof: Suppose.x; ž f / is an optimal solution of. f -LC/. First we will show
that for allw ∈W

x.w/ = q+ 1+ ž f f w:

The feasibility constraints of. f -LC/ imply

x.w/ ≥ q+ 1+ ž f f w .w ∈W/

x.u/ ≥ q+ ž f f u .u ∈ U/
and x.g/ ≥ ž f f .N\g/:

Now let D ⊆ U be a cover for whichž f = ž f .D/. Consider the coalition
S= {g} ∪ D∪W. Then

3q.q+ 1+ ž f f w/+ |D|.q+ ž f f u/+ ž f f .N\g/

≤ x.S/

≤ c.S/− ž f f .S/

= c.S/− .|D|+ 2q− 1/+ .|D|+ 2q− 1/− ž f f .S/

= c.S/− .|D|+ 2q− 1/+ ž f .|D| f u+ 3qfw+ f .N\g/+ f .S//− ž f f .S/

= 3q.q+ 1+ ž f f w/+ |D|.q+ ž f f u/+ ž f f .N\g/:

Hencex.S/ ≤ c.S/− ž f f .S/ implies that for allw ∈W

x.w/ = q+ 1+ ž f f w:
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Hencex ∈ f -leastcore(N; c) provides us with the value of the parameterž f .
We can efficiently compute the size|D| of a minimum coverD ⊆ U as fol-
lows: Computež f .D/ for |D| = q, |D| = q+ 1 and|D| = q+ 2 (cf. Re-
mark 3.2). By (C2), it suffices to computež f .D/ only for these sizes. By
(P2),ž f = ž f .D/ for at least one of these sizes. Note that a coverD of size
|D| ≤ k− 2 implies the existence of covers with size|D|+ 1 and|D|+ 2.
Hence, by (P2), the size of a minimum cover|D| will be the maximum of the
sizes for which equality holds.

Given an allocation vectorx ∈ f -leastcore(N; c), we can thus compute the
size of a minimum coverD in polynomial time. Hence the computation of
such a vector is at least as hard as the computation of the size of a minimum
cover. �

Since the core of an MCST-game (N; c) is nonempty, we have thatž∗, the
optimal value of (f -LC), is positive. Then thef -nucleolus of (N; c) is a
subset off -leastcore(N; c) and the corollary below immediately follows.

Corollary 3.2 For the class of feasible priority functions, the problem of com-
puting an allocation vector x in the f -nucleolus of an MCST-game (N; c) is
NP-hard. �

The next theorem gives a characterization of the set of feasible priority func-
tions f : 2N→ R+.

Theorem 3.4 The set of feasible priority functions f: 2N→ R+ forms a con-
vex cone (minus f≡ 0).

Proof: It is obvious thatÞ f is feasible forÞ > 0 if f is feasible. Now suppose
f1; f2 : 2N → R+ are feasible. We will show thatf := f1+ f2 is feasible. It
is straightforward to verify that for all coversD ⊆ U,

ž f .D/ = ž f1.D/ž f2.D/
ž f1.D/+ ž f2.D/

:

First we prove thatf satisfies (P2). For a coverD⊆U of sizeq≤ |D| ≤ q+2,
we have

ž f = ž f .D/ if and only if D ⊆ U is a minimum cover.

“⇒” Suppose|D| is not minimum andD̃ ⊆ U is a minimum cover ofW.
Since f1 and f2 satisfy (P2),ž f1.D̃/ < ž f1.D/ andž f2.D̃/ < ž f2.D/. Hence
ž f .D̃/ < ž f .D/, which implies thatž f .D/ is not minimal.
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“⇐” SupposeD̃⊆U is a cover andž f .D̃/ < ž f .D/. Then at least one of the
two inequalitiesž f1.D̃/ < ž f1.D/ andž f2.D̃/ < ž f2.D/must be valid. Hence,
by (P2),D is not a minimum cover.

We now show that (P1) holds forf . Above we have proved that

ž f = ž f1ž f2

ž f1 + ž f2
:

By Lemma 3.1 it suffices to show thatž f is a feasible value for. f -LC/.

Assume that.x1; ž f1/ is an optimal solution of. f1-LC/, and that.x2; ž f2/ is
an optimal solution of. f2-LC/. We show that.x; ž f /, wherex∈ RN is given
by

x.i / = ž
f2x1.i /+ ž f1x2.i /
ž f1 + ž f2

for all i ∈ N;

is a (feasible) solution of (f -LC). First note thatx.N/ = c.N/ becausex1

andx2 are allocations. Now suppose∅ 6= S 6= N. Then

c.S/− ž f f .S/ = c.S/− ž f1ž f2

ž f1 + ž f2
. f1.S/+ f2.S//

= ž f2.c.S/− ž f1 f1.S//+ ž f1.c.S/− ž f2 f2.S//
ž f1 + ž f2

≥ ž f2x1.S/+ ž f1x2.S/
ž f1 + ž f2

= x.S/:

�

3.3.4 Sufficient conditions forNP-hardness

The purpose of this section is to present some conditions for priority functions
that are easy to check and imply feasibility. For example, they can be used
to prove feasibility of the three specific priority functions mentioned in the
introduction of this section. To state our conditions below, we introduce the
following notation: A coalitionS⊂ N is connected, if the induced subgraph
G|S is connected.
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Conditions:

(S1) f w ≤ f u ≤ .1+ 1
q/ f w.

(S2) There exists a numberM ∈ R+, independent ofq andk, for which

f .S/ ≤ M f w for all ∅ 6= S 6= N:

(S3) For all connected coalitionsS; S′ ⊂ N with |S| > 1
3q and 0≤ |S′| −

|S| ≤ 2

| f .S′/− f .S/| ≤ 1
4

f w:

(S4) f .S/ > 0 whenever|S| > 0 andc.S/ > 0.

Theorem 3.5 Let the priority function f: 2N → R+ satisfy conditions (S1),
(S2), (S3) and (S4). Then f satisfies (P1) and (P2), provided q is sufficiently
large.

Proof: Let D ⊆ U be a cover with minimum size. We will prove thatx :=
xž

f .D/ andž := ž f .D/ are feasible for. f -LC/. By Lemma 3.1 and the defini-
tion of ž f , ž f = ž f .D/ is then the optimal value of. f -LC/. Becausež f .D/
only depends on|D| (cf. Remark 3.2),D can be any minimum cover. In the
end we will show thatž f < ž f .D/ for all coversD ⊆ U that are not minimal.

Let ∅ 6= S 6= N maximizeŽ.S/ := x.S/− c.S/+ ž f .S/:We have to show that
Ž.S/ ≤ 0: SupposeŽ.S/ > 0.

Recall that

x.w/ = q+ 1+ ž f w for all w ∈W
x.u/ = q+ ž f u for all u ∈ U
x.g/ = ž f .N\g/:

For the rest of the proof, we need the following relations.

2
3

1
f w
≤ ž ≤ 3

4
1
f w
: .3:3/

If Ž.S/ > 0 , then|S| > 1
3

q: .3:4/
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Proof of (3.3): We have

ž = |D|+ 2q− 1
|D| f u+ 3qfw + f .N\g/+ f .D ∪W∪ g/

≤ |D|+ 2q− 1
|D| f u+ 3qfw

≤.S1/ |D|+ 2q− 1
|D| f w+ 3qfw

≤.C2/ 3q+ 1
4q+ 2

1
f w

≤ 3
4

1
f w
;

and

ž = |D|+ 2q− 1
|D| f u+ 3qfw+ f .N\g/+ f .D∪W∪ g/

≥.S1/;.S2/ |D|+ 2q− 1

|D|.1+ 1
q
/ f w + 3qfw + 2M f w

≥.C2/ |D|+ 2q− 1
|D|+ 3q+ 2M + 2

1
f w

≥ 3q− 1
4q+ 2M + 2

1
f w

(since|D| ≥ q)

≥ 2
3

1
f w

(for q sufficiently large):
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Proof of (3.4): First we show thatx.St/ ≤ 1
3q: We have

x.St/ = c.N/− x.g/− kx.u/− 3qx.w/

≤ 3q+ 3q.q+ 1/+ kq− kq− žk fu− 3q.q+ 1/− ž3qfw

= 3q− žk fu− ž3qfw

≤ 3q− žqfu− ž3qfw (sincek≥ q)

≤.S1/ 3q− ž4qfw

≤.3:3/ 1
3q:

Hence, in particular,x.St/ ≤ q+ 1+ ž f u. Thus, forS⊂ N we have

x.S/ ≤.S1/ .q+ 1+ ž f u/|S|+ ž f .N\g/

≤.S1/;.S2/ .q+ 1+ ž.1+ 1
q/ f w/|S|+ žM f w

≤.3:3/ .q+ 2/|S|+ M;

c.S/ ≥ q|S|+ q− 1; and

ž f .S/ ≤.S2/ žM f w

≤.3:3/ M:

Hence

0 < x.S/− c.S/+ ž f .S/

≤ .q+ 2/|S|+ M − q|S| − q+ 1+ M

= 2|S| − q+ 1+ 2M:

Then |S| > 1
2q− 1

2 − M > 1
3q (for q sufficiently large).

This completes the proof of (3.4). We now continue the proof of the theorem
by establishing a sequence of claims.
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Claim (1): If St∈ S then|S| < |N| − 1:

SupposeS= N\i for somei ∈ {g}∪U ∪W. Then, by definition ofx, Ž.S/=
0, a contradiction, since we assumeŽ.S/ > 0.

Claim (2): St∈ S or g ∈ S:

SupposeS⊆U ∪W; S= S1∪ S2∪ : : :∪ Sr with Si .i = 1; : : : ; r / connected.
By connecting one subsetSi to s with cost at least 3q+ .|Si| − 1/.q+ 1/ and
by connecting the other subsetsSj . j 6= i / to Si with cost at least 2q+ .|Sj| −
1/.q+ 1/, it is clear that

c.S/ ≥ 3q+ 2q.r − 1/+
r∑

i=1

.|Si| − 1/.q+ 1/

= r.q− 1/+ q+ |S|.q+ 1/:

Furthermore we have

x.S/ = |S∩U|ž f u+ |S∩W|ž f w + |S∩U|q+ |S∩W|.q+ 1/

≤.S1/ |S∩U|ž.1+ 1
q/ f w + |S∩W|ž f w + |S∩U|q+ |S∩W|.q+ 1/

≤.3:3/ 3
4|S∩U|.1+ 1

q/+ 3
4|S∩W|+ |S∩U|q+ |S∩W|.q+ 1/

= 4q2+3q+3
4q |S∩U|+ .q+ 7

4/|S∩W|;

and

ž f .S/ ≤.S2/ Mž f w

≤.3:3/ M:

Since each node inU is adjacent to exactly three nodes inW, for i = 1; : : : ; r

|Si ∩W| ≤ 2|Si ∩U|+ 1:

Hence

|S∩U| =
r∑

i=1

|Si ∩U| ≥
r∑

i=1

|Si ∩W| − 1
2

= 1
2
|S∩W| − 1

2
r:
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Then

Ž.S/ = x.S/− c.S/+ ž f .S/

≤ 4q2+3q+3
4q |S∩U|+ .q+ 7

4/|S∩W| − r.q− 1/− q− |S|.q+ 1/+ M

= 3
4|S∩W| − q−3

4q |S∩U| − r.q− 1/− q+ M

≤ 3
4|S∩W|+ q−3

4q .
1
2r − 1

2|S∩W|/− r.q− 1/− q+ M

≤ M + 2− 1
8q (since|S∩W| ≤ 3q andr ≥ 1)

≤ 0 (for q sufficiently large);

a contradiction, since we assumeŽ.S/ > 0. Henceg ∈ Sor St∈ S:

Claim (3): S∩U coversS∩W:

Up to now, we have proved that an MST forS looks as follows. Eachu ∈
S∩U is connected tog (with costq+ 1) or toSt(with costq). Each covered
w ∈ S∩W is connected to a nodeu∈ S∩U (with costq+1). Each uncovered
w ∈ S∩W is without loss of generality joined tog (with cost 2q+ 2) or to
St (with cost 2q+ 1). Now supposew ∈ S∩W is not covered byS∩ U.
Supposew is covered byu. =∈ S/. Then

c.S\w ∪ u/ ≤ c.S/− .q+ 1/;

and

Ž.S\w∪ u/− Ž.S/

= x.u/− x.w/+ c.S/− c.S\w ∪ u/+ ž. f .S\w ∪ u/− f .S//

≥.S2/ ž. f u− f w/+ q− žMf w

≥.S1/;.3:3/ q− 3
4 M

> 0 (for q sufficiently large);

contradicting the maximality ofŽ.S/: HenceS∩U coversS∩W. In particu-
lar, S is connected and, by (3.4),|S| > 1

3q.
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Claim (4): Scontains allw covered byS∩U.

Supposew ∈ W is covered byS∩U andw =∈ S. By claim (1), |N\S| ≥ 2:
ThenS∪ {w} 6= N and

Ž.S∪w/− Ž.S/ = x.w/+ c.S/− c.S∪w/+ ž. f .S∪w/− f .S//

= ž. f w + f .S∪w/− f .S//

>.S3/ 0;

contradicting the maximality ofŽ.S/:

Claim (5): St =∈ S:

SupposeSt∈ S: If S∩U = U then, by claim (4),S∩W = W. HenceS=
N\g in contradiction to claim (1). Supposeu =∈ S. By claim (1), |N\S| > 1:
ThenS∪ {u} 6= N and, by claim (3),c.S∪ u/ = c.S/+ q. We have

Ž.S∪ u/− Ž.S/ = x.u/+ c.S/− c.S∪ u/+ ž. f .S∪ u/− f .S//

= ž. f u+ f .S∪ u/− f .S//

≥.S1/ ž. f w + f .S∪ u/− f .S//

>.S3/ 0;

contradicting the maximality ofŽ.S/.

Claim (6): S∩W=W.

Supposew ∈ W\S. By claim (4), w is not covered byS∩U: Because each
node inW has at least two neighbors inU, we have|S∩U| ≤ |U| − 2. Sup-
posew is covered byu. =∈ S/. By claim (2) and claim (5),g ∈ S. Then
c.S∪ u∪w/ = c.S/+ 2q+ 2 and

Ž.S∪ u∪w/− Ž.S/

= x.u/+ x.w/+ c.S/− c.S∪ u∪w/+ ž. f .S∪ u∪w/− f .S//

= −1+ ž. f u+ f w + f .S∪ u∪w/− f .S//

>.S1/;.S3/ −1+ ž 3
2 f w

≥.3:3/ 0;
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contradicting the maximality ofŽ.S/:

Claim (7): S= {g} ∪ D∪W for some minimum coverD ⊆ U:

Up to now, we have proved thatS= {g} ∪ D′ ∪W for some coverD′ ⊆ U.
SupposeD̃ ⊆ U is a cover with|D̃| < |D′|. Without loss of generality we
may assume that|D̃| = |D′| − 1 (otherwise add a sufficient number of nodes
u∈ U to D̃). Let S̃= {g} ∪ D̃∪W. It is obvious thatx.S̃/ = x.S/− q− ž f u

andc.S̃/ = c.S/− q− 1. Then

Ž.S̃/− Ž.S/

= 1+ ž. f .S̃/− f .S/− f u/

>.S1/;.S3/ 1− ž 4
3 f w

≥.3:3/ 0;

contradicting the maximality ofŽ.S/:

We have proved that

S= {g} ∪ D∪W for some minimum coverD ⊆ U:

Then (by definition ofž) Ž.S/ = 0. Hence.x; ž/ is a feasible solution of
. f -LC/. Becausež f .D/ only depends on|D|, D can be any minimum cover.
This proves (P1) and the “⇐”-part of (P2).

We complete the proof by showing thatž f < ž f .D/ for all coversD ⊆U that
are not minimal. We have already proved that for all coalitions∅ 6= T 6= N

Ž.T/ ≤ Ž.S/ = 0;

whereS= {g} ∪ D∪W andD ⊆ U can be any minimum cover. LetD′ ⊆ U
be a cover that is not minimal andS′ = {g} ∪ D′ ∪W. In the proof of claim
(7) we have shown that there exists a coverD̃ ⊆ U with |D̃| = |D′| − 1 and
Ž.S̃/ > Ž.S′/, whereS̃= {g} ∪ D̃∪W. Hence

Ž.S′/ < Ž.S̃/ ≤ Ž.S/ = 0;

which is equivalent tož f < ž f .D′/. �
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Consider again the priority functions mentioned in the introduction:

� f .S/ = 1 for all ∅ 6= S 6= N
� f .S/ = |S| for all ∅ 6= S 6= N
� f .S/ = c.S/ for all ∅ 6= S 6= N:

It is straightforward to check that these functions satisfy (S1), (S2) and (S4).
Furthermore, the first two functions obviously satisfy (S3). In order to show
that condition (S3) is also valid forf given by f .S/ = c.S/ for ∅ 6= S 6= N,
we deduce that for a connected coalitionSof size|S| ≥ 1

3q

c.S/ ≤ |S|.q+ 1/+ 2q− 1≤ |S|q+ 7|S| (3.5)

and

c.S/ ≥ |S|q+ q− 1≥ |S|q: (3.6)

By using these two inequalities condition (S3) is easily seen to be satisfied.
Hence, by Theorem 3.3 and Theorem 3.5, the problem of computing an al-
location vectorx ∈ f -leastcore(N; c) of MCST-games isNP-hard for these
functions. By Corollary 3.2 computing the correspondingf -nucleoli isNP-
hard (see also Faigle, Kern and Kuipers [1998a] forf ≡ 1).

Theorem 3.6 Computing the nucleolus, the nucleon and the per-capita nu-
cleolus of MCST-games isNP-hard. �

Furthermore, one can verify that functions, such as

� f .S/ = c.S/|S| for all ∅ 6= S 6= N

� f .S/ = c.S/
|S| for all ∅ 6= S 6= N;

satisfy (S1), (S2), (S3) (use (3.5) and (3.6)) and (S4). Hence these functions
also belong to the class of feasible priority functions.

We end our discussion by mentioning some priority functions for which our
approach does not yield anyNP-hardness result. In particular, functions that
give high priority to small conditions, such as

� f .S/ = e−|S| for all ∅ 6= S 6= N

� f .S/ = 1
|S| for all ∅ 6= S 6= N;

violate conditions (S2) and (S3).
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As a generalization of the class of priority functionsf i, suppose there is a set
T ⊆ N of important individuals with size|T| ≥ 2. One may then consider the
priority function

f .S/ =
{

1 if S= {i}; i ∈ T
0 otherwise;

which does not satisfy (S4).

Whether thef -least core orf -nucleolus for any of these functions can be
computed efficiently is still an open problem.





Chapter 4

Matching games

In a matching game the players are represented by nodes in a certain graph and
the profit of a coalition is equal to the weight of the corresponding maximum
matching. Section 4.1 contains an introduction into matching theory. We treat
the Gallai-Edmonds decomposition, which plays an important role in the rest
of this chapter.

In Section 4.2 we consider general matching games. We show that an element
in the least core can be computed efficiently. Furthermore, in case the core is
nonempty, the nucleolus can be computed efficiently.

In Section 4.3 we restrict ourselves to matching games on a graph, where the
weight on an edge is defined as the sum of certain weights defined on the
incident nodes. Cardinality matching games belong to this class. We show
that the nucleolus can be computed efficiently. This result is based on an
alternative characterization of the least core, which may be of independent
interest.

4.1 Matching theory

In this chapter we shall need some fundamental results and concepts from
matching theory, which will be treated in this section. For more on matching
theory we refer to the book of Lov´asz and Plummer [1986]. We start with the
following example as given in Shapley and Shubik [1972].

Consider a real estate market. In this market we have a groupN1 of home-
owners and a groupN2 of prospective purchasers. The first group tries to sell

63
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a house, while the second group is interested to buy one. Now supposej ∈ N2

is a purchaser, who is interested in the house of personi ∈ N1. Letw.i; j/ de-
note the difference between the maximum offer ofj and the minimum selling
price of i. If w.i; j/ ≥ 0, personi and j are willing to do business with each
other. Thenw.i; j/ can be interpreted as a “common profit”.

We can model this situation by a bipartite graphG with node classesN1 and
N2. Between two nodesi ∈ N1 and j ∈ N2 an edge (i; j) exists if and only if
w.i; j/ ≥ 0. Then the problem of maximizing the total profit comes down to
anassignment problem, i.e., to find a maximum weight matching in abipartite
graph.

We can generalize these kind of problems to nonbipartite graphs. Eachi ∈ V
has exactly one good to offer. He can do business with at most one other
person. A pairi; j ∈ V, each with their own good to offer, obtains a common
profit w.i; j/, if they do business with each other. They are only willing to
do that, ifw.i; j/ ≥ 0. So an edge betweeni and j exists if and only if
w.i; j/ ≥ 0. Take for example a second hand car market, where each person
has one car and some money. The problem of maximizing the total profit is
called amaximum weight matching problem.

Definition 4.1 Let G= .V; E/ be a graph with a weight functionw defined
on the edge setE. Then a maximum weight matchingis a matchingM∗ in G
that has maximum weight, i.e.,

w.M∗/ =max{w.M/ | M ⊆ E is a matching}:

�

Example 4.1 Consider the graphG= .V; E/ with edge weightingw as indi-
cated in Figure 4.1. The matchingM∗ = {.1;6/; .3;4/; .5;8/} is a maximum
weight matching inG with weightw.M∗/ = 15. Node 2 and 7 are not cov-
ered byM∗. The matchingM is not the unique maximum weight matching,
since the matchingM′ = {1;5/; .3;4/; .6;8/} also has weightw.M′/ = 15.
Note that everyperfectmatching, such as̃M = {.1;2/; .3;4/; .5;6/; .7;8/},
has weight at mostw.M/ = 14. �

As a special case of maximum weight matching problems we introduce the
class ofnode matching problems. Let G= .V; E/model the following market
situation: Eachi ∈ V has a “weight”wi ≥ 0 indicating his importance or
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Figure 4.1

power. The edges inE correspond with pairs of potential business partners.
Now assume that, ifi and j do business with each other, their common profit
equalsw.i; j/ = wi +w j. If we want to maximize the total profit, then again
we have to find a maximum weight matching. In this case we call the problem
a node matching problem.

Definition 4.2 Thenode matching problemis the problem of finding a max-
imum weight matching in a graphG= .V; E/ with edge weightingw : E→
R+ that can be expressed as the sum of certain positive weights on the inci-
dent nodes: There exists a weight functionw̄ : V→ R+ on the nodes ofG in
such a way that

w.i; j/ = w̄i + w̄ j for all .i; j/ ∈ E:

�

If no misunderstanding is possible, then we also indicate the node weight
function byw.

Edmonds [1965a] proved that the maximum weight matching problem can
be solved in polynomial time. Before we go into that result, we first restrict
ourselves tocardinality matching problems.
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A maximum matchingin a graphG= .V; E/ is a matchingM∗ of maximum
cardinality, i.e.,

|M∗| =max{|M| | M ⊆ E is a matching}:

The problem of finding a maximum matching in a graph is called thecardi-
nality matching problem. Note that this problem can been seen as the simplest
case of a node matching problem by defining a node weightingw ≡ 1

2 on V.

A minimum node coveris a node coverV∗ ⊆ V of minimum cardinality, i.e.,

|V∗| = min{|V′| | V′ ⊆ V is a node cover}:

The following well-known min-max relation, valid for bipartite graphs, is due
to König [1931].

Theorem 4.1 The size of a maximum matching in a bipartite graph G=
.V; E/ is equal to the size of a minimum node cover in G. �

Edmonds [1965b] constructed a polynomial time algorithm for solving the
cardinality matching problem. The main idea is to find anaugmenting path.

Let M be a matching in a graphG= .V; E/. A pathP= v0v1 : : : vk in G is an
alternating path(relative toM) if for each i = 1; : : : ; k− 1 either.vi−1; vi/

or .vi; vi+1/ belongs toM. A path P= v0v1 : : : vk in G is called augmenting
(relative toM), if P is alternating and both nodesv0 andvk are not covered by
M. So the edges.v0; v1/; .v2; v3/; : : : ; .vk−1; vk/ do not belong toM, while
the edges.v1; v2/; .v3; v4/; : : : ; .vk−2; vk−1/ belong toM. Note that in this
case the length ofP is odd.

For two subsetsE1; E2 ⊆ E we let E14 E2 denote the setE1\E2 ∪ E2\E1.
It is straightforward to see that, for a matchingM and alternating pathP;
M4 P is again a matching inG. We say thatM4 P is the matching obtained
after reversing M along P. If P is augmenting, then|M 4 P| = |M|+ 1.
Furthermore, it is not difficult to prove the following lemma.

Lemma 4.1 Let G= .V; E/ be a graph and let M1;M2 be matchings in G.
Then each component of the graph G′ = .V;M14 M2/ is either an alternat-
ing path (possibly of length0) or an even cycle. �

To check whether a matchingM is a maximum matching or not, it is sufficient
to know whether there exists an augmenting path.
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Theorem 4.2 Let M be a matching in a graph G= .V; E/. Then either M is
a maximum matching, or there exists an augmenting path relative to M.

Proof: If M is a maximum matching andP is an augmenting path, thenM4
P would be a larger matching, a contradiction.

If M is not a maximum matching, then there exists a matching|M′| > |M|.
At least one of the components inG′ = .V;M14 M2/ contains more edges
of M′ than ofM. By Lemma 4.1, such a component must be an augmenting
path. �

The running time of the cardinality matching algorithm of Edmonds [1965b]
is bounded byO.|V|4/. Over the years this method has been sharpened (for
a survey, see Lov´asz and Plummer [1986]). Eventually Micali and Vazirani
[1980] showed that the running time can be reduced toO.|V| 12 |E|/.
Theorem 4.3 Given a graph G= .V; E/, a maximum matching can be found
in time bounded byO.|V| 12 |E|/. �

For our main results, as stated in Section 4.3, we make use of theGallai-
Edmonds decompositionof a graph. In order to describe this decomposition
we need the following basic concepts.

A (near-)perfect matchingis a matching that covers all nodes (except one). A
graph is factor-critical if removing any node results in a perfectly matchable
graph.

Let V′ ⊆ V. We letC = C.V′/ denote the set of even components ofG\V′
andD = D.V′/ the set of odd components ofG\V′. The subsetV′ ⊆ V is
called aTutte set, if each maximum matchingM of G decomposes as

M = MC ∪ MV′;D ∪ MD;

where MC is a perfect matching in
⋃
C, the union of all even components.

MD induces a near-perfect matching in all odd componentsD ∈ D andMV′;D
is a matching that matchesV′ (completely) into

⋃
D, the union of odd com-

ponents. Note thatMV′;D has to match eachi ∈ V′ in a different component
D ∈ D.

Equivalently,V′ is a Tutte-set if and only if the sizem∗ of a maximum match-
ing in G equals

m∗ =
∑
C∈C

|C|
2
+ |V′|+

∑
D∈D

.|D| − 1/
2

:



68 Matching games

Tutte sets can be found efficiently. More precisely, the following result, which
has been proven by both Gallai [1963], Gallai [1964] and Edmonds [1965b],
is true.

Theorem 4.4 (Gallai-Edmonds Decomposition).Given G= .V; E/, one can
efficiently construct a unique Tutte set T⊆ V such that

(i) all odd components D∈ D are factor-critical

(ii) for each D∈ D there is some maximum matching that does not com-
pletely cover D.

�

Let G= .V; E/ be a graph with node setV and edge setE. SupposeT ⊆ V is
the Tutte set satisfying condition (i) and (ii) of the theorem above. Clearly, a
nodev ∈ V is a node in

⋃
D if and only if there exists a maximum matching

in G not coveringv.

Remark 4.1 The cardinality matching algorithm of Edmonds [1965b] can be
used to construct the Tutte setT as described in Theorem 4.4. Given a graph
G= .V; E/, we compute the sizem∗ of a maximum matching inG. We next
compute for alli ∈ V the size of a maximum matching inG\i. If this size is
equal tom∗, theni is a node in

⋃
D. Otherwisei is not a node in

⋃
D. Then

the subset ofV\V.
⋃
D/ that consists of all nodesv ∈ V adjacent to at least

one node in
⋃
D forms the required Tutte setT. �

Example 4.2 Let G = .V; E/ be the graph as shown in Figure 4.2. It is
straightforward to see that the setT = {v1; v2} is the unique Tutte set satisfy-
ing conditions (i) and (ii) of Theorem 4.4. We haveD = D1∪ D2∪ D3∪ D4

andC = C1∪C2. �

We now return to the general maximum weight matching problem. LetG=
.V; E/ be a complete graph with even node setV and edge weightingw. A
minimum weight perfect matchingis a perfect matchingM∗ in G that has

minimum weight, i.e.,

w.M∗/ = min{w.M/ | M ⊆ E is a perfect matching}:

Edmonds [1965a] obtained the following result.
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Figure 4.2. Gallai-Edmonds decomposition of a graph

Theorem 4.5 Let G= .V; E/ be a complete graph with even node set V and
edge weightingw : E→ R. Then a minimum weight perfect matching in G
can be found in polynomial time. �

This theorem implies that also the maximum weight matching problem can
be solved efficiently. This can be seen as follows. LetG= .V; E/ be a graph
with edge weightingw : E→ R. Since edges with negative weights will not
occur in any maximum weight matching, we may without loss of generality
assume thatw ≥ 0. If G is not already a complete graph, we add edges with
zero weight. If|V| is odd, then we add a nodeu to V and edges fromu to
the nodes inV with zero weight. This way we have extendedG to a complete
graph Ḡ. Finding a maximum weight matching inG is now equivalent to
finding a minimum weight perfect matching in̄G with edge weightinḡw given
by w̄.e/ = −w.e/ for all e∈ Ḡ.E/.

Corollary 4.1 Let G= .V; E/ be a graph with edge weightingw : E→ R.
Then a maximum weight matching in G can be found in polynomial time.�
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A minimum weight maximum matchingin a graphG = .V; E/ with edge
weightingw : E→ R is a maximum matchingM∗ that has minimum weight,
i.e.,

w.M∗/ = min{w.M/ | M ⊆ E is a maximum matching}:

Also the next result is a direct consequence of Theorem 4.5.

Corollary 4.2 Let G= .V; E/ be a graph with edge weightingw : E→ R.
Then a minimum weight maximum matching in G can be found in polynomial
time.

Proof: If G is not already a complete graph, then we add edges with a suffi-
cient large weight, sayw.E/+ 1. If |V| is odd, then we add a nodeu to V
and edges fromu to the nodes inV with weightw.E/+ 1. This way we have
extendedG to a complete graph̄G. Then computing a minimum weight max-
imum matching inG is equivalent to computing a minimum weight perfect
matching inḠ. �

4.2 Matching games in general

4.2.1 Introduction

Consider again the example of an exchange market consisting of a group of
personsN as described in Section 4.1: Eachi ∈ N has exactly one good to
offer and can do business with at most one other person. A pairi; j ∈ N is
only willing to do business with each other, if they obtain a common profit
w.i; j/ ≥ 0. So an edge betweeni and j only exists in casew.i; j/ ≥ 0.
Obviously the total profit will be maximal, if all persons inN cooperate and a
maximum weight matching can be constructed. The problem of dividing the
total profit among the persons inN can be modeled as a matching game.

Definition 4.3 A matching game(N; v) is determined by a graphG= .N; E/
with node setN and by a rational weight functionw ≥ 0 defined on the edge
setE. The valuev.S/ of a coalitionS⊆ N is the value of a maximum weight
matching in the subgraph induced byS. �

In this definition we assume thatw is a positive function, since edges with
a negative weight will not occur in any maximum weight matching. It is
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straightforward to see that

v.S/+ v.T/ ≤ v.S∪ T/ for all S;T ⊆ N; S∩ T = ∅:

So a matching game is superadditive, andv.N/ is the maximum total profit
that players inN can obtain. Furthermore,v.i / = 0 for all individual players
i ∈ N.

The underlying discrete structure of a matching game (N; v) is a graphG and
an edge weightingw. Let< w > again denote the maximum size of the edge
weights, i.e.,< w >= max{< w.i; j/ > | .i; j/ ∈ E}. Then we may define
< N; v >= |N| < w >.

Example 4.3 Consider the graphG= .N; E/with edge weightingw as shown
in Figure 4.3. The matching game (N; v) obtained from this graph is deter-
mined byN = {1;2;3;4} andv : 2N→ R+ given by
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31
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34

Figure 4.3

v.1/ = 0 v.1;2/ = 2 v.1;2;3/ = 3 v.N/ = 7:
v.2/ = 0 v.1;3/ = 3 v.1;2;4/ = 2
v.3/ = 0 v.1;4/ = 1 v.1;3;4/ = 5
v.4/ = 0 v.2;3/ = 3 v.2;3;4/ = 5

v.2;4/ = 1
v.3;4/ = 5

�
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Given a graphG = .N; E/ and edge weightingw, a node matching game
arises if a positive weight function̄w : N→ R+ on the nodes ofG exists in
such a way that

w.i; j/ = w̄i + w̄ j for all .i; j/ ∈ E:

If w ≡ 1 (or equivalentlyw̄ ≡ 1
2), then we call the corresponding node match-

ing game acardinality matching game.

A matching game associated with a bipartite graph is called anassignment
game. Shapley and Shubik [1972] introduced this game and showed that the
core of an assignment game is always nonempty. Assignment games have
been widely studied in the literature (see, e.g., Quint [1991], Granot and Gra-
not [1992]). Solymosi and Raghavan [1994] present an efficient algorithm for
computing the nucleolus of an assignment game.

With respect to a general matching game, Faigle, Kern, Fekete and Hochst¨attler
[1998] present an efficient algorithm for computing the nucleon and point out
that the problem of computing the nucleolus remains unsolved. In the next
section we summarize the results known for general matching games.

4.2.2 Solution concepts for matching games

The simplest matching game is a matching game (N; v) determined byG=
K2, the complete graph on two nodes. The core of this game is equal to

core.N; v/ = {x∈ R2 | x1+ x2 = w.1;2/ andx≥ 0};

and the nucleolus of (N; v) is the allocation.1
2w.1;2/;

1
2w.1;2//.

During the rest of this chapter we will assume thatG 6= K2. In contrast to
an assignment game, a general matching game can have an empty core. This
can already be the case for a matching game on three nodes (cf. Example 2.3,
which can be interpreted as a matching game). Below we give some more
examples of (cardinality) matching games with empty core. We have also
computed the nucleolus of these games.

Example 4.4 Let G = .N; E/ be the graph with edge weightingw ≡ 1 as
shown in Figure 4.4.N is split into {t} ∪ N.D1/ ∪ N.D2/. Consider the
standard procedure for computing the nucleolus (see Section 2.3). The linear
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2

t

1D

D

Figure 4.4

program (P1) has already a unique optimal solution: the nucleolus�.N; v/
given by

�i.N; v/ =
{

4
7 if i = t
3
7 if i ∈ N.D1/∪ N.D2/

andž1 = −3
7. �

Example 4.5 Let G = .N; E/ be the graph with edge weightingw ≡ 1 as
shown in Figure 4.5. We haveN = N.D1/∪ N.D2/∪ N.D3/. Thenž1=−1
andP1.−1/ contains all allocationsx∈ RN for which

xi = xj .i; j ∈ N.Dp/; p= 1; : : : ;3/
xi + xj = 1

2 .i ∈ N.D1/; j ∈ N.D2//

xi = 1
2 .i ∈ N.D3//

x ≥ 0:

The nucleolus�.N; v/ is given by

�.N; v/ ≡ 1
4 on N.D1/∪ N.D2/

�.N; v/ ≡ 1
2 on N.D3/:

�

For E′ ⊆ E we let N.E′/ denote the set of nodes covered byE. If no mis-
understanding is possible, we also use the following shorthand notation: If
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3

21D D

D

Figure 4.5

e= .i; j/ ∈ E, we write x.e/ = x.{i; j}/. More generally, ifM ⊆ E is a
matching, we letx.M/ := x.N.M//. The following theorem gives an alter-
native characterization of the core of a matching game. It turns out that only
the core constraints for the one-and two-person coalitions are of importance.

Theorem 4.6 Let (N; v) be a matching game obtained from a graph G=
.N; E/ with edge weightingw. Then core(N; v) equals the set of allocations
x∈ RN that are in the polyhedron Pc defined by the following constraints:

Pc x.N/ = v.N/
x.e/ ≥ w.e/ for all e ∈ E
xi ≥ 0 for all i ∈ N:

If x ∈ core(N; v), then

(i) xi = 0 for all i ∈ N not covered by a maximum weight matching.

(ii) x.e/ = w.e/ for all e ∈ E contained in a maximum weight matching.

Proof: The proof of the first part is straightforward, using the fact that the
above constraints implyx.S/ ≥ v.S/ for all S⊂ N.

Suppose core(N; v) is nonempty, and letx ∈ core(N; v). Let M be a max-
imum weight matching inG. The core constraints implyx.N/ = v.N/ =
w.M/; x≥ 0 andx.e/ ≥ w.e/ for all e∈ M. Then

w.M/ = x.N/ = x.N\N.M//+ x.M/ ≥ x.M/ ≥ w.M/

implies thatxi = 0 for all i =∈ N.M/ andx.e/ = w.e/ for all e∈ M. �

So, for matching games the number of inequalities defining the core have been
reduced to a polynomial number.
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Corollary 4.3 Checking whether the core of a matching game (N; v) is empty
or not can be done in polynomial time. �

By definition, the least core of a matching game (N; v) contains all optimal
solutions of the linear program

.LC/ max ž

s:t: x.S/ ≥ v.S/+ ž .S 6= ∅; N/
x.N/ = v.N/:

Let ž∗ denote the optimal value of (LC). Also computing an element in the
least core of a matching game (N; v) can be done in polynomial time. In
order to prove this we need the following lemmas. Recall that we assume that
G 6= K2, in which casež∗ = 1

2w.i; j/.

Lemma 4.2 Let (N; v) be a matching game. Thenž∗ = 0 if core(N; v) is
nonempty, andž∗ < 0 if core(N; v) is empty.

Proof: Obviously ž∗ ≥ 0 if and only if core(N; v) is nonempty. Suppose
ž∗ > 0 andx ∈ RN is an allocation in the least core of (N; v). Let M be a
maximum weight matching. Sincež∗ > 0; x is also a core allocation. By
Theorem 4.6x.e/ = w.e/ for an edgee∈ M, which contradicts the least core
constraintx.e/ ≥ w.e/+ ž > w.e/. �

Lemma 4.3 Let (N; v) be a matching game. Then leastcore(N; v) ⊆ RN
+.

Proof: If core(N; v) is nonempty, the lemma follows trivially from Theorem
4.6. Suppose core(N; v) is empty, and assume to the contrary that (x; ž1) is an
optimal solution of (LC), andxi < 0 for somei ∈ N. By Lemma 4.2ž1 < 0.

Claim: If S⊆ N satisfiesx.S/ ≥ v.S/+ ž1 with equality, theni ∈ S.

Proof: Assume to the contrary thati =∈ S.

case (i) S⊂ S∪ i ⊂ N.
Thenx.S∪ i / < x.S/ = v.S/+ ž1 ≤ v.S∪ i /+ ž1 contradicts the feasibility
of x.

case (ii) S⊂ S∪ i = N.
Thenx.N/ = x.S/+ xi = v.S/+ ž1+ xi < v.S/ ≤ v.N/ again contradicts
the feasibility ofx.

Hence the claim is true. But then we may slightly increasexi and decreasex
on N\i uniformly by the same total amount, thereby obtaining a better solu-
tion. This proves the lemma. �
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Due to Lemma 4.3, the linear program (LC) is equal to (P1), the first linear
program that has to be solved in order to compute the nucleolus (see Section
2.3). Lemma 4.3 also implies that the nucleolus is nonempty for all matching
games. LetM denote the set of matchingsM ⊆ E. Then both linear programs
can now be stated as

.P1/ max ž

s:t: x.M/ ≥ w.M/+ ž .M ∈M/

x.N/ = v.N/
x ≥ 0:

Theorem 4.7 Computing an allocation in the least core of a matching game
(N; v) can be done in polynomial time.

Proof: By Theorem 2.3 it suffices to show that for givenx∈RN andž ∈Rwe
can efficiently check whetheremin.x/ ≥ ž or not. Since we can formulate the
linear program (LC) as the linear program (P1) described above, this comes
down to check whether

x.M/ ≥ w.M/+ ž .M ∈M/

holds. This can be done by solving a maximum weight matching problem on
G= .N; E/ with respect to the edge weights

w̃.i; j/ := w.i; j/− xi − xj ..i; j/ ∈ E/:

Hence applying Corollary 4.1 finishes the proof. �

Faigle, Kern, Fekete and Hochst¨attler [1998] showed that the nucleon of a
matching game can be computed in polynomial time. For a matching game
with a nonempty core this also holds for the nucleolus.

Proposition 4.1 Let (N; v) be a matching game. If core(N; v) is nonempty,
then the nucleolus of (N; v) can be computed in polynomial time.

Proof: We define

.P+1 / max ž

s:t: x.e/ ≥ w.e/+ ž .e∈ E/
xi ≥ ž .i ∈ N/

x.N/ = v.N/
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with optimum valuež+1 ∈ R. (In factž+1 = 0 holds, cf. Lemma 4.2). Next we
identify

E1 := {e∈ E | e∈ Fix P+1 .ž
+
1 /} andN1 := {i ∈ N | i ∈ Fix P+1 .ž

+
1 /}

and then solve

.P+2 / max ž

s:t: x.e/ = w.e/+ ž+1 .e∈ E1/

xi = ž+1 .i ∈ N1/

x.e/ ≥ w.e/+ ž .e∈ E\E1/

xi ≥ ž .i ∈ N\N1/

x.N/ = v.N/

with optimum valuež+2 = ž2 etc. until we obtain a linear program (P+r ) that
defines a unique solutionx∗ ∈ RN. Using the fact that the constraintsx≥ 0
andx.e/ ≥ w.e/ for all e∈ E imply x.S/ ≥ v.S/ for all S⊂ N, it is clear
thatx∗ is equal to the nucleolus of (N; v). �

The above approach fails in casež1 < 0. Whether there exists an efficient
algorithm for computing the nucleolus of a general matching game is not
known. In the next section we restrict ourselves to node matching games. We
show that for this class of matching games the nucleolus can be computed in
polynomial time. This generalizes the result of Kern and Paulusma [2000],
where cardinality matching games are considered. We first give a polyno-
mial description of the least core. Next, we use this description to present an
efficient algorithm for computing the nucleolus.

4.3 Node matching games

Recall that node matching games arise when the edge weightsw.e/ are the
sum of certainpositiveweights on the incident nodes. In this section we
consider a node matching game (N; v) that is obtained from a graphG =
.N; E/ with node weightingw : N→ R+. The edge weightingw is defined
byw.i; j/ = wi +w j for all .i; j/ ∈ E.

We use the following standard notation: ForS⊆ N we let E.S/ ⊆ E denote
the set of edges joining nodes ofS. Recall thatN.E′/ denotes the set of nodes
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covered by a subsetE′ ⊆ E. Furthermore, forS⊆ N we use the shorthand
notation

w.S/ =
∑
i∈S

wi :

Note thatw.S/ ≥ v.S/. Recall that we use the same notation for a matching
M ⊂M, i.e.,

w.M/ =
∑
e∈M

w.e/ =
∑
.i; j/∈M

.wi +w j /:

We assume thatT ⊆ N is the Tutte set satisfying the conditions (i) and (ii)
in Theorem 4.4. The set̃M∗ denotes the set of maximum weight matchings
in G, andM∗ denotes the set of maximum matchings inG. EachM ∈M∗

matchesT completely inD. By condition (ii) of Theorem 4.4, givenD ∈ D,
there is someM ∈ M∗ matchingT into D\{D}. We say thatM leaves D
uncovered.

We will sometimes identify subsets ofN with the corresponding induced sub-
graphs. For example, ifi ∈ N is a node, we do not hesitate to writei ∈ D to
indicate thati is a node of the componentD ∈ D. If x ∈ RN is an allocation,
we consequently write

x.D/ =
∑
i∈D

xi :

Each maximum weight matching can be extended to a maximum matching in
the following sense.

Lemma 4.4 Let M̃ ∈ M̃∗ be a maximum weight matching. Then there exists
a matching M∈M∗ in such a way that N.M̃/ ⊆ N.M/.

Proof: SupposeM̃ ∈ M̃∗ is a maximum weight matching not already inM∗.
By definition of the Tutte setT every maximum matchingM ∈ M∗ covers⋃
C and matchesT completely into

⋃
D. Now choose a maximum matching

M ∈ M∗ in such a way that all nodes in each componentD ∈ D that are
covered byM̃∗, also are covered byM. That this is possible can be seen as
follows. SupposeM does not cover a nodei ∈

⋃
D that is covered byM̃.

Consider the maximum alternating pathP⊆ M ∪ M̃ starting ini and ending
in j. (Such a path exists according to Lemma 4.1.) SinceM ∈M∗; j is not
covered byM̃. ReversingM alongP results in a matchinḡM ∈M∗ covering
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N.M/\ j ∪ i. For other nodes that are covered byM̃, but no byM, we do the
same. Hence we may assume thatM covers.N.M̃/∩

⋃
C/∪ .N.M̃/∩ T/∪

.N.M̃/∩
⋃
D/ = N.M̃/. �

If M̃ ∈ M̃∗ and M ∈ M∗ with N.M̃/ ⊆ N.M/, then obviouslyw.M/ =
w.M̃/. SoM̃∗ ⊆M∗ holds if the node weightingw is strictly positive.

The following lemma gives a lower bound on the valuev.N\i / for all i ∈⋃
D.

Lemma 4.5 For all i ∈
⋃
D, v.N\i / ≥ v.N/ − wi . If w > 0 on D then

v.N\i / > v.N/−wi holds.

Proof: SupposeD ∈ D andi ∈ D. If M∗ ∈ M̃∗ is a maximum weight match-
ing not coveringi, thenv.N\i / = v.N/ ≥ v.N/−wi.

Otherwise assume thati is covered by a matchingM ∈ M̃∗. By Lemma
4.4 we may assume thatM is a maximum matching. According to Theorem
4.4 there exists a maximum matchingM′ ∈M∗ not coveringD. SinceD is
factor-critical, we may assume thatM′ does not coveri.

By Lemma 4.1 there exists a unique maximal alternating pathP⊆ M ∪ M′

starting ini and ending in a nodej. Since both matchingsM and M′ cover
T ∪

⋃
C; j must be a node in a componentD′ ∈ D (possibly equal toD).

ReversingM along P results in a matching̃M ∈M∗ coveringN.M/\i ∪ j.
Hencev.N\i /≥ w.M̃/=w.M/−wi +w j = v.N/−wi +w j, which proves
the lemma. �

The next result gives a sufficient condition for the core to be nonempty. If the
node weightingw : N→ R+ is strictly positive, then this is also a necessary
condition.

Theorem 4.8 If |D| = 1 for all D ∈ D, then core(N; v) is nonempty. If the
node weightingw : N→ R+ is strictly positive, then also the reverse state-
ment is true.

Proof: Suppose|D|= 1 for all D ∈ D. Delete the componentsC ∈ C and all
edges between nodes inT. In this way a graphG′ with node setN′ = T∪

⋃
D

has been constructed. OnG′ we define the same node weightingw (restricted
to T ∪

⋃
D). SinceG′ is bipartite, the corresponding node matching game

(N′; v′/ has a nonempty core (Shapley and Shubik [1972]).
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Choose an allocatioñx∈ core(N′; v′) in such a way that̃xi ≥ wi for all i ∈ T.
Such an allocation exists by the following reasoning. Add toG′ an extra node
s with weightws= 0 and connects to each node inT. This new graph is also
bipartite and the corresponding matching game (N′ ∪ s; v′′) has a nonempty
core. By Lemma 4.4 a maximum weight matching inG′ exists that matches all
nodes inT. Then the value of a maximum weight matching has not increased
after adding the extra nodes. Hence a core allocatioñx of the node matching
game.N′ ∪ s; v′′/ (restricted toN′) lies in core.N′; v′/. By Theorem 4.6 we
havex̃s= 0. Thenx̃i = x̃i + x̃s≥ wi +ws= wi for all i ∈ T. Hencex̃′ ∈ RN

defined by

x̃′ ≡ wc on
⋃
C

x̃′ ≡ x̃ on T ∪
⋃
D

is easily seen to be an element in core(N; v).

Supposew > 0 onD and D ∈ D with |D| ≥ 3. Let e= .i; j/ ∈ E.D/. By
Lemma 4.5 we havev.N\i / > v.N/− wi andv.N\ j/ > v.N/− w j. So if
x∈ RN were in the core, then

x.N\i / ≥ v.N\i / > v.N/−wi and x.N\ j/ ≥ v.N\ j/ > v.N/−w j :

Together withx.N/= v.N/ these inequalities implyxi+ xj <wi+w j, a con-
tradiction with the core constraintx.e/= xi+ xj ≥wi+w j. Hence core(N; v)
must be empty. �

The following result shows that, according to a core allocationx ∈ RN, the
amount that is allocated to a nodei ∈ D does not exceed the weightwi. This
implies thatxi = 0 for a nodei ∈

⋃
D with weightwi = 0.

Proposition 4.2 If core(N; v) is nonempty, then for all x∈ core(N; v)

xi ≤ wi for all i ∈
⋃
D:

If D ∈ D has size|D| > 1, then xi = wi holds for all i∈ D.

Proof: SupposeD ∈ D and i ∈ D. Let x ∈ RN be a core allocation. By
Lemma 4.5,v.N\i / ≥ v.N/ − wi. Then xi = x.N/ − x.N\i / ≤ v.N/ −
v.N\i / ≤ wi.

If |D| > 1 then there is a nodej ∈ D such that.i; j/ is an edge inE. Since
x ∈ core(N; v), xi + xj ≥ wi +w j. Since we have just deduced thatxi ≤ wi

andxj ≤ w j, this implies thatxi = wi (andxj = w j). �
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4.3.1 The least core of node matching games

Recall that, due to Lemma 4.3, the linear program defining the least core can
be stated as the linear program

.P1/ max ž

s:t: x.M/ ≥ w.M/+ ž .M ∈M/

x.N/ = v.N/
x ≥ 0

with optimal valuež1 ≤ 0. In the following we assume that core(N; v) is
empty. Equivalently, by Lemma 4.2ž1 < 0. Furthermore, by Theorem 4.8
there exists at least one componentD ∈ D with size|D| > 1.

Example 4.6 Consider the node matching game (N; v) obtained from the
graphG= .N; E/ with node weightingw as indicated in Figure 4.6.

3

1

2

2

5

3

15

1

6 7

43

2

Figure 4.6

Clearly, the setT = {5} is the Tutte set satisfying conditions (i) and (ii) of
Theorem 4.4. The graphG\T has two odd componentsD1 with node set
{1;2;3} and D2 with node set{4}, and one even componentC1 with node
set{6;7}. By Theorem 4.8 core(N; v) is empty.
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The value of a maximum weight matching inG is equal tov.N/ = 16. Let
(x; ž) be a feasible solution for.P1/. Thenx1+ x2≥ 6+ ž; x.N\1/ ≥ 12+ ž
andx.N\2/ ≥ 16+ ž. Together withx.N/ = 16 we obtain the upper bound
ž ≤ −2

3.

It is easy to check that̃x= .42
3;

2
3;1

2
3;0;4;2;3/ is an allocation inP1.−2

3/.
Hencež1 = −2

3. In fact, the allocations in leastcore(N; v/ = P1.−2
3 / turn out

to be exactly the allocations in the polyhedron determined by the constraints

x1 = 42
3

x2 = 2
3

x3 = 12
3

x3+ x5 ≥ 3
x4+ x5 = 4
x5+ x6 ≥ 3
x6+ x7 = 5
x.N/ = 16
x ≥ 0:

�

By Theorem 4.7 we can efficiently compute an allocation in the least core of
(N; v). Here we aim for more, namely a concise description ofP1.ž1/.

Note that in Example 4.6xi −wi = xj −w j ≤ 0 for all nodesi; j in the same
componentD ∈ D. Also x.e/ ≥ w.e/ for all edges inE with at least one
end point not in

⋃
D. Furthermore, large matchings such as the matching

M = {.1;2/; .4;5/; .6;7/} and matchings completely contained in
⋃
D turn

out to become tight, i.e., the corresponding constraints in (P1) become tight.
Also for Example 4.4 and Example 4.5 this is true. Generally speaking, this
holds for any node matching game, i.e., we will prove that the least core of
(N; v) can be described as the solution set of the following linear program.

max ž

s:t: xi −wi = xj −w j .i; j ∈ D; D ∈ D/
xi ≤ wi .i ∈

⋃
D/

x.e/ ≥ w.e/ .e∈ E\E.
⋃
D//

x.N/ = v.N/
x ≥ 0

ž =
∑
D∈D

|D| − 1
|D| .x.D/−w.D//:
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In this description the exponentially many constraints defining the least core
have been replaced by a polynomially number.

If core(N; v) would be nonempty, this is straightforward to see: By Theorem
4.6 core(N; v) is equal to the polyhedronPc. By Proposition 4.2 we may add
the constraintsx ≤ w on

⋃
D, andxi = wi for all i ∈ D and D ∈ D with

|D| > 1. So, if core(N; v) would be nonempty, then the optimal solutions of
the linear program as defined above describe the (least) core of (N; v).

However, we have assumed that core(N; v) is empty, and in the rest of this
section we show that also in this case the linear program.P1/ can be replaced
by the linear program as described above. As a first step, we introduce a
relaxation (P̂1) of (P1) below, which is easier to analyze and, as we shall
see, defines the same optimum value. To motivate this approach, note that,
as shown in Example 4.6, rather large matchings and matchings completely
contained in

⋃
D are expected to become tight when solving (P1) instead of

small ones (single nodes and edges) as in the case of a nonempty core.

LetMD denote the set of matchingsM ⊆ E.
⋃
D/ that are completely con-

tained in the union of the odd components. We shall study the following
relaxation of (P1):

. P̂1/ max ž

s:t: x.M/ ≥ w.M/+ ž .M ∈M∗ ∪MD/
x.N/ = v.N/

x ≥ 0

with optimal valuež̂1 ∈ R. Obviously ž̂1 ≤ 0. Below we will show that
ž̂1 < 0. Note that we do not explicitly consider maximum weight matchings
in the description of (̂P1). However, by Lemma 4.4 we know that, in case
these matchings do not already belong to the setM∗ of maximum matchings,
there exists a corresponding matchingM ∈M∗.

To investigate the structure of optimal solutions of (P̂1), we first introduce
some notation. As before,̂P1.ž/ denotes the set ofx ∈ RN such that (x; ž) is
feasible for (̂P1). If x∈ P̂1.ž̂1/ is an optimal solution, we say thatM ∈M∗ ∪
MD is x-tight, if x.M/ = w.M/+ ž̂1. Given a feasible solutionx ∈ P̂1.ž/

andD ∈ D, let

xD := x.D/
|D|
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denote the average value ofx on D. In the same way we define the average
weight on a componentD ∈ D :

wD := w.D/|D| :

Define x̄ ∈ RN by averaging x with respect to the node weightsw on each
componentD ∈ D, i.e.,

x̄i := xD−wD +wi .i ∈ D; D ∈ D/

and leavingx unchanged onT ∪
⋃
C. Note thatx̄i.D/ = x.D/, and

x̄i −wi = x̄ j −w j for all i; j ∈ D:

First we show that̄x ∈ P̂1.ž̂1/, if x ∈ P̂1.ž̂1/ is an optimal solution. In order
to this we need the following series of lemmas.

Lemma 4.6 Let x∈ P̂1.ž/ for somež < 0. If no x-tight matchings inMD
exist, thenž is not optimal.

Proof: Supposex.M/ > w.M/+ ž for all matchingsM ∈MD. If no x-tight
matchings inM∗ exist either then, obviously,ž is not optimal. If M ∈ M∗

covers all nodesi ∈
⋃
D with xi > 0, then

x.M/ = x.N/ = v.N/ > v.N/+ ž;

which means thatM is notx-tight. Hence eachx-tight matching inM∗ does
not cover all nodesi ∈

⋃
D with xi > 0. Then we may slightly and uniformly

decreasex on the set{i ∈
⋃
D | xi > 0} and increase it by the same total

amount onT ∪
⋃
C. The resultingx̃ has no tight matchings inM∗ ∪MD,

which implies thatž is not optimal. �

Lemma 4.7 If x ∈ P̂1.ž/ thenx̄.M/ ≥ w.M/+ ž for all M ∈M∗ ∪MD.

Proof: Let x ∈ P̂1.ž/. It suffices to show that the constraints above are still
satisfied after averagingx with respect to the node weightingw on some com-
ponentD ∈ D. Thus letD ∈ D and letx̃∈ RN be obtained by averagingx on
D, i.e.,

x̃i = xD −wD +wi .i ∈ D/:
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SupposeM ∈M∗. Then eitherM coversD or M ∩ D= D\i for somei ∈ D.
In the first casẽx.M/ = x.M/ and the claim follows. In the second case we
may assume without loss of generality thati ∈ D maximizesxi − wi over
D, otherwise we replaceM inside D by some other near-perfect matching
without changingx̃.M/−w.M/. (Recall thatD is factor-critical.) But then
xi − wi ≥ xD − wD = x̃i − wi and consequentlỹx.M/− w.M/ ≥ x.M/ −
w.M/, so the claim follows asx∈ P̂1.ž/.

Next considerM ∈MD and assumeM minimizesx̃.M/−w.M/ overMD.
If xD −wD > 0 on D, thenM ∩ D = ∅. Hencex̃.M/ = x.M/ and the claim
follows. If xD − wD ≤ 0 on D, then M ∩ D is without loss of generality a
near-perfect matching inD and we argue as we did forM ∈M∗. �

It is immediately clear that̄x.N/ = x.N/. We still have to show that̄x ≥ 0
for an allocationx∈ P̂1.ž̂1/.

Lemma 4.8 If x ∈ P̂1.ž̂1/ thenx̄∈ P̂1.ž̂1/.

Proof: Let x ∈ P̂1.ž̂1/. Besidesx̄.N/ = v.N/ we have already shown, in
Lemma 4.7, that̄x.M/ ≥ w.M/+ ž̂1 for all M ∈ M∗ ∪MD. Let wD

min de-
note the minimum weight in a componentD ∈ D, i.e,wD

min = min{wi | i ∈
D} .D ∈ D/. We will prove that for allD ∈ D

xD ≥ wD −wD
min:

Thenx̄≥ 0, and we are finished. Now supposeD′ ∈D andxD′ < wD′ −wD′
min,

or equivalently, ∑
i∈D′

xi <
∑
i∈D′

.wi −wD′
min/:

Note that|D′| > 1. Let j ∈ D′ be a node withw j = wD′
min. It is straightforward

to see that we can obtain an allocationx̃∈ RN such that

x̃i ≤ wi −w j .i ∈ D′/
x̃.D′/ = x.D′/
x̃i = xi .i ∈ N\D′/
x̃ ≥ 0:

We have choseñx in such a way that̃xj = 0 and x̃i − wi ≤ x̃ j − w j for all
i ∈ D′\ j.
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• Below we show that̃x is an allocation inP̂1.ž̂1/. Besidesx̃≥ 0, obviously
x̃.N/ = v.N/. So we are left to check whetherx̃.M/ ≥ w.M/+ ž̂1 for all
M ∈M∗ ∪MD.

SupposeM ∈M∗. Then eitherM coversD′ or M ∩ D′ = D′\i for somei ∈
D′. In the first casẽx.M/ = x.M/ ≥ w.M/+ ž̂1. In the second case we de-
duce thatx̃.D′\i /−w.D′\i / ≥ x̃.D′\ j/−w.D′\ j/ ≥ x.D′\ j/−w.D′\ j/,
sincexi −w j ≤ xj −w j andxj = 0. BecauseD is factor-critical, we can re-
place the edges inM coveringD′\i by 1

2.|D| − 1/ edges coveringD′\ j. This
results in a matchingM′ such that

x̃.M/−w.M/ ≥ x.M′/−w.M′/ ≥ ž̂1:

SupposeM ∈MD and assume thatM minimizesx̃.M/−w.M/ overMD.
Sincex̃i ≤ wi −w j ≤ wi; M ∩ D′ is without loss of generality a near-perfect
matching inD′ and we argue as we did forM ∈M∗.

• Since x̃.D′/ = x.D′/ <
∑

i∈D′.wi − w j /, there exists a nodek ∈ D′ for
which x̃k < wk−w j, and consequently,̃xk−wk < x̃ j −w j.

Claim: The nodek ∈ D′ is covered by everỹx-tight matchingM ∈ M∗ ∪
MD.

Proof: SupposeM ∈M∗ is x̃-tight. If M coversD′ then the claim follows.
Otherwise|M ∩ D′| = |D′| − 1. SupposeM ∩ D′ = D′\{k}. Since x̃k −
wk < x̃ j −w j, we havex̃.D′\k/−w.D′\k/ > x̃.D′\ j/−w.D′\ j/. Then a
matchingM′ ∈ M∗ would exist withN.M′/ = N.M/\ j ∪ k and x̃.M′/ <
w.M′/+ ž̂1, contradicting the feasibility of̃x.

SupposeM ∈ MD is x̃-tight. If |M ∩ D′| = |D′| − 1 then, from the above,
M must coverk. Otherwise|M ∩ D′| < |D′| − 1. SupposeM does not cover
k. Sincex̃i ≤ wi on D′, we can extendM to a tight matchingM′ inMD that
coversD′\k, a contradiction.

• We now show that we can increasež̂1 by modifying x̃ a little, which would
contradict the optimality of̂ž1. We first deduce that̂ž1≤ x̃k+ x̃i −wi −wk <

0, wherei ∈ N is chosen in such a way thati ∈ D′ and.i; k/ ∈ E.

Supposẽx.T ∪
⋃
C/ > 0. Then decreasẽx onT ∪

⋃
C and increasēxk by the

same amount in such a way that the resultingx̃′ is still in P̂1.ž̂1/. Clearly, x̃′

has no tight matchings inMD. By Lemma 4.6̂ž1 is not optimal, a contradic-
tion.
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Supposex̃.T ∪
⋃
C/ = 0. Thenx̃.

⋃
D/ = x.N/ − x̃.T ∪

⋃
C/ = x.N/ =

v.N/ ≥ v.
⋃
D/=∑D∈D.w.D/−wD

min/. Sincex̃.D′/ < w.D′/− |D′|wD′
min,

there exists a componentD̃ ∈ D with x̃.D̃/ > w.D̃/− |D̃|wD̃
min. By Lemma

4.7, we may assume that

x̃i = xD̃ −wD̃ +wi > 0 on D̃:

Then decreasẽx on D̃ and increasẽxk by the same sufficient small amount.
Again the resulting allocation has no tight matchings inMD, and ž̂1 would
not be optimal.

So we have showed that for allD ∈ D xD ≥ wD −wD
min, implying thatx̄≥ 0.

�

Lemma 4.9 ž̂1 < 0.

Proof: Supposex ∈ P̂1.ž̂1/. By Lemma 4.8 we may assume thatx = x̄.
If x̄D < wD on someD ∈ D, then consider an edgee ∈ E.D/. We have
ž̂1 ≤ x̄.e/−w.e/ = 2.x̄D −wD/ < 0.

SupposēxD ≥ wD for all D ∈ D. Let M be a maximum weight matching in
M∗. If M covers alli ∈

⋃
D with wi > 0, thenx′ given byx′i = wi is easily

seen to be a core allocation. This contradicts our assumption that core(N; v)
is empty. Hence there exists a nodei in someD ∈ D with wi > 0 that is
not covered byM. Then x̄i = x̄D − wD + wi ≥ wi > 0, and consequently,
x̄.M/ < x̄.M ∪ i / ≤ x̄.N/ = v.N/. Together withx̄.M/ ≥ v.N/+ ž̂1, this
implies ž̂1 < 0. �

Summarizing we conclude thatž̂1 < 0. If x∈ P̂1.ž̂1/ is an optimal allocation,
so is x̄. Furthermore, some matchings inM∗ ∪MD must bex̄-tight. These
can in principle be found by minimizinḡx.M/ − w.M/ overM∗ ∪MD.
Minimizing x̄.M/−w.M/ overM∗ amounts to solving a minimum weight
maximum matching problem (cf. Corollary 4.2). Minimizingx̄.M/−w.M/
overMD is even trivial: We simply choose a near-perfect matching in each
componentD ∈ D with xD < wD (plus an arbitrary matching in all compo-
nents on whichxD = wD). So computing an̄x-tight M ∈M∗ ∪MD for given
x̄∈ P̂1.ž̂1/ is easy.

We aim at a more structural characterization ofx̄-tight matchings for given
x̄∈ P̂1.ž̂1/. LetDmax=Dmax.x̄/ ⊆D be the set of odd components on which
x̄D −wD is maximum (among allD ∈ D).
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Lemma 4.10 No x̄-tight M∈M∗ covers all D∈ Dmax. If x̄-tight matchings
in M∗ exist at all, then for each D∈ Dmax there is somēx-tight M ∈ M∗

leaving D uncovered.

Proof: SupposeM̄ ∈ M∗ is x̄-tight and coversD ∈ Dmax. Let M̃ ∈ M∗ be
any matching not coveringD. (Recall Theorem 4.4). LetP⊆ M̄ ∪ M̃ be the
unique maximal alternating path starting inD (in a nodei uncovered byM̃)
and ending in, say,̃D (in a nodej uncovered byM̄). ReversingM̄ along P
results in a matchingM ∈M∗ coveringN.M̄/\i ∪ j ∈ D̃. SinceD ∈ Dmax,
we havex̄i −wi = x̄D−wD ≥ x̄D̃ −wD̃ = x̄ j −w j, hence

x̄.M/−w.M/ ≤ x̄.M̄/−w.M̄/:

Thus M must bex̄-tight again, proving the second claim. The first claim
follows by observing that ifM̄ would cover allD ∈ Dmax, thenD̃ =∈ Dmax (as
it is uncovered byM̄). But thenx̄D −wD > x̄D̃ −wD̃ and x̄.M/−w.M/ <
x̄.M̄/−w.M̄/ = ž̂1, contradictingx̄∈ P̂1.ž̂1/. �

LetM∗
D denote the set of all maximum matchings inMD.

Lemma 4.11 Let x∈ P̂1.ž̂1/. Then

(i) x = x̄

(ii) x ≤ w on
⋃
D

(iii) Each M ∈M∗
D is x-tight.

Proof: Let x ∈ P̂1.ž̂1/. We first prove (ii) and (iii) forx̄ and then show that
x= x̄.

(ii) x̄≤ w on
⋃
D, or equivalently,̄xD ≤ wD for all D ∈ D:

Suppose to the contrary thatx̄D >wD ≥ 0 for some odd componentD ∈Dmax.
Thenx̄i > wi ≥ 0 for all i ∈

⋃
Dmax.

We first consider the caseT ∪
⋃
C = ∅. If Dmax= D, we hadx̄ > wD for

all D ∈ D and hencēx.N/ > v.N/, a contradiction. HenceDmax⊂ D. By
Lemma 4.10 we may decreasex̄ slightly and uniformly on

⋃
Dmax and in-

creasex̄ on
⋃
D\

⋃
Dmax resulting in somē̄x ∈ P̂1.ž̂1/ for which no M ∈

M∗ ∪MD is tight. This contradicts the optimality ofž̂1.
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Now supposeT ∪
⋃
C 6= ∅. If Dmax= D, we hadx̄D > wD for all D ∈ D

and hence noM ∈MD werex̄-tight. By Lemma 4.6,̂ž1 < 0 is not optimal, a
contradiction.

If Dmax⊂D, we proceed as follows. ChoseŽ > 0 sufficiently small and let̄xŽ

arise fromx̄ by

� decreasinḡxi by
Ž

|D| (i ∈ D; D ∈ Dmax)

� increasingx̄ on T by Ž′ in total, where.|Dmax| − 1/Ž < Ž′ < |Dmax|Ž

� increasingx̄ uniformly on
⋃
D\

⋃
Dmax by |Dmax|Ž− Ž′ in total.

For sufficiently smallŽ > 0 the resultingx̄Ž has x̄Ž.M/ > x̄.M/ for eachx̄-
tight M ∈MD (since none of these meetsDmax) and x̄Ž.M/ > x̄.M/ for all
x̄-tight M ∈ M∗ by Lemma 4.10. Hence, again̄xŽ ∈ P̂1.ž̂1/ has no tight
matchings, contradicting the optimality ofž̂1.

(iii) Each M ∈M∗
D is x̄-tight: First note that for anyM1;M2 ∈M∗

D,

x̄.M1/−w.M1/ = x̄.M2/−w.M2/ =
∑
D∈D

.|D| − 1/.x̄D −wD/:

Sincex̄D ≤ wD for all D ∈ D, eachM ∈M∗
D minimizesx̄.M/−w.M/ over

MD. Then the claim follows from Lemma 4.6.

(i) x= x̄:
For eachD ∈ D we chose a nodei ∈ D with xi −wi =max{xj −w j | j ∈ D}
and a near-perfect matching coveringD\i. Let M ∈ M∗

D be the union of
all these near-perfect matchings. By construction we havex.M/−w.M/ ≤
x̄.M/− w.M/ with equality if and only ifx ≡ x̄ on

⋃
D. But sinceM is

x̄-tight,

x.M/−w.M/ < x̄.M/−w.M/ = ž̂1

would contradictx∈ P̂1.ž̂1/. �

Lemma 4.12 Let x= x̄∈ P̂1.ž̂1/. If x.T ∪
⋃
C/ = 0, then every M∈M∗ is

x-tight.
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Proof: If T∪
⋃
C is empty, thenM∗ =M∗

D and the claim follows by Lemma
4.11(iii). SupposeT ∪

⋃
C is nonempty andx.T ∪

⋃
C/ = 0. Recall that any

M ∈M∗ decomposes as

M = MC ∪ MT;D ∪ MD

with MC a perfect matching of
⋃
C, MT;D matchingT completely into

⋃
D

andMD ∈M∗
D. SinceMD is x-tight (cf. Lemma 4.11(iii)), we havex.MD/=

w.MD/+ ž̂1. Together withx.M/ ≥ w.M/+ ž̂1, this implies

x.MC ∪ MT;D/ ≥ w.MC /+w.MT;D/:

Let B⊂
⋃
D be the set of nodes that is joined to the nodes inT by MT;D. Then

w.MC /+w.MT;D/ = w.T ∪
⋃
C/+w.B/. By Lemma 4.11(ii),xi ≤ wi for

all i ∈ B. Since we assumed thatx.T ∪
⋃
C/ = 0, we have

w.B/+w.T ∪
⋃
C/ ≤ x.B/ ≤ w.B/:

Thenw ≡ 0 onT ∪
⋃
C andxi = wi on B. Hence we deduce that

x.M/ = x.MC /+ x.T/+ x.B/+ x.MD/
= w.B/+w.MD/+ ž̂1

= w.M/+ ž̂1:

�

Lemma 4.13 Let x= x̄∈ P̂1.ž̂1/. Then there is some x-tight M∈M∗. More-
over, if D∈ Dmax or |D|> 1 then there is some x-tight M∈M∗ not covering
D.

Proof: If x̄.T ∪
⋃
C/ = 0 then, according to Lemma 4.12, everyM ∈M∗ is

x-tight. Since for eachD ∈ D there is some matchingM ∈M∗ not covering
D, we have finished this case.

Assume thatT ∪
⋃
C 6= ∅ andx̄.T ∪

⋃
C/ > 0. Supposēx.M/ > w.M/+ ž̂1

for all M ∈ M∗. Then we could do as follows: Decrease (somehow)x̄ on
T ∪

⋃
C and increasēx uniformly on

⋃
D by the same total (sufficiently

small) amount. The resultinḡ̄x were still in P̂1.ž̂1/ and would contradict
Lemma 4.11(iii).

By Lemma 4.10 this implies that eachD ∈ Dmax is left uncovered by some
x̄-tight M ∈M∗. We are left to prove a corresponding result forD ∈ D with
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|D|> 1. Assume thatD ∈D\Dmax and|D|> 1. Thenx̄<w on D by Lemma
4.11(ii), so everyx̄-tight M ∈ M∗

D contains a near-perfect matching ofD.
Now supposeD is covered by everȳx-tight M ∈M∗. Sincex̄.T ∪

⋃
C/ > 0,

we may decreasēx slightly on T ∪ C and increasex uniformly on D by the
same (sufficiently small) total amount. The resulting¯̄x would again be in
P̂1.ž̂1/ and contradict Lemma 4.11(iii). This finishes the proof. �

We call an allocationx= x̄∈ P̂1.ž̂1/ flexibleif the conclusion of Lemma 4.13
holds with respect to allD ∈ D, i.e., if eachD ∈ D is left uncovered by some
x̄-tight M ∈M∗.

Lemma 4.14 Flexible allocations exist.

Proof: Let x = x̄ ∈ P1.ž̂1/. Supposēx is not already flexible. Then there
exists a componentD = {i} ∈ D of size 1 such that everȳx-tight M ∈M∗

coversi. Maximum matchings not coveringi are not tight. In particular, this
implies thatT 6= ∅ and, by Lemma 4.12,̄x.T ∪

⋃
C/ > 0.

We may thus increasēxi and decreasēx onT∪
⋃
C by the same total amountŽ

until x̄ becomes “flexible” with respect toD= {i}. By Lemma 4.12 we know
that this will happen beforeŽ exceeds the valuēx.T ∪

⋃
C/. In other words,

we chooseŽ > 0 maximal such that the modificationx̄Ž is still in P̂1.ž̂1/. Then
x̄Ž.M/= w.M/+ ž̂1 holds for a matchingM ∈M∗ that does not coveri (and
is not x̄-tight). Because all matchings inM∗ that were alreadȳx-tight (and
coveri) remain tight, the claim follows by induction. �

We are now ready to determine the structure ofx-tight matchings inM∗ for
flexible x = x̄ ∈ P̂1.ž̂1/. Supposex̂ ∈ P̂.ž̂1/ is a given flexible allocation.
Suppose thatÞ0 < : : : < Þp .p≥ 0/ are the different valueŝx−w takes on⋃
D and let

D = D0∪ : : : ∪Dp

be the corresponding partition ofD. Hencex̂− w ≡ Þi on
⋃
Di andDp =

Dmax.

Proposition 4.3 There exists a partition T= T0 ∪ : : : ∪ Tp (with some of the
Ti possibly empty) such that M∈M∗ is x̂-tight if and only if M matches each
Ti intoDi .

Proof: If T = ∅, the claim is true in the sense that nothing is matched intoD
and eachM ∈M∗ is x̂-tight. (By Lemma 4.13, somêx-tight M ∈M∗ exists
and sinceT = ∅, all M ∈M∗ have the samêx-value.)



92 Matching games

In general, recall that̂x-tight matchings inM∗ are exactly those that minimize
x̂.M/−w.M/ overM∗. For givenx̂, the valuex̂.M/−w.M/ only depends
on how many nodes ofT are matched into eachDi. (This readily follows from
the decompositionM = MC ∪ MT;D ∪ MD.) In other words,x̂.M/− w.M/
only depends on the total.x̂− w/-weight of nodes in

⋃
D that are matched

with T. The claim therefore follows from Lemma 4.15 below. �

Lemma 4.15 Consider a bipartite graph G with node classes A and B. Sup-
pose B= B0 ∪ : : : ∪ Bp is a partition of B and edges incident with Bi have
weightÞi (Þ0 < : : : < Þp/. Assume that the setM∗ of matchings that com-
pletely match A into B is nonempty and letM∗

min be the set of M∈M∗ with
minimum weight. Suppose finally, thatM∗

min is “flexible” in the sense that
each b∈ B is left uncovered by some M∈ M∗

min. Then there is a partition
A= A0∪ : : :∪ Ap of A such that M∈M∗

min if and only if M matches Ai into
Bi (i = 0; : : : ; p).

Proof: LetM∗
0 denote the set of maximum matchings in the subgraphG0

induced byA∪ B0. EachM ∈M∗
min induces a maximum matchingM0 ⊆ M

inM∗
0. This can be seen as follows: SupposeM does not induce a matching

M0 ∈M∗
0. Let M′0 be a maximum matching inM∗

0. For all nodesb∈ B0 that
are covered byM′0 but not byM we do as follows. LetP⊆ M ∪ M′0 be the
unique maximal alternating path starting in nodeb∈ B0 uncovered byM and
ending in a nodea uncovered byM′0. ReverseM along P. Then in the end
this results in a matchingM′ with w.M′/ < w.M/, a contradiction. Hence
we must have

.∗/ Eachb ∈ B0 is left uncovered by someM0 ∈M∗
0:

Supposem∗0 is the maximum size of a matching inG0. As G0 is bipartite,
Theorem 4.1 ensures the existence of a (minimum) node coverA∗0 ∪ B∗0
(A∗0⊆ A; B∗0 ⊆ B) of sizem∗0. Since|A∗0∪ B∗0|= |M| for a matchingM ∈M∗

0,
eachM ∈M∗

0 is incident with all nodes inA∗0 ∪ B∗0. Hence, by (*) we con-
clude thatB∗0 = ∅. In other words, eachM ∈M∗

min matchesA∗0 into B0. Now
letM∗

1 denote the set of maximum matchings in the subgraphG1 induced by
A\A∗0∪ B1, and continue in the same way. So the claim follows by induction.

�



4.3 Node matching games 93

We are now prepared to present our main result, a simple alternative descrip-
tion of the least core. Consider the LP

.
ˆ̂P1/ max ž

s:t: x = x̄
xi ≤ wi .i ∈

⋃
D/

x.e/ ≥ w.e/ .e∈ E\E.
⋃
D//

x.N/ = v.N/
x.M/ ≥ w.M/+ ž .M ∈M∗

D/
x ≥ 0:

Note thatx≡ x̄ is just a shorthand notation for a number of linear equalities
of the typexi − wi = xj − w j. Furthermore, note that forx ≡ x̄ the value
x.M/−w.M/ is independent of the particular choice ofM ∈M∗

D. Hence the
exponentially many constraints forM ∈M∗

D reduce to one single inequality.

Again, we let ˆ̂P1.ž/ := {x | .x; ž/is feasible for. ˆ̂P1/} and denote the optimum

value of ( ˆ̂P1) by ˆ̂ž1.

Theorem 4.9 We havež1= ž̂1= ˆ̂ž1 and leastcore.N; v/= P1.ž1/= ˆ̂P1. ˆ̂ž1/.

Proof:
• We havež1 ≤ ž̂1 by definition.

• ž̂1 ≤ ˆ̂ž1: Let x̂∈ P̂1.ž̂1/ be flexible with corresponding partitionsD =
D0∪ : : : ∪Dp andT = T0∪ : : : ∪ Tp. Define ˆ̂x∈ RN by

ˆ̂xi =
 wi if i ∈

⋃
C

x̂i if i ∈
⋃
D

wi − Þ j if i ∈ Tj .0≤ j ≤ p/:

We show thatˆ̂x ∈ ˆ̂P1.ž̂1/ (proving that ˆ̂ž1 ≥ ž̂1). The only non-trivial con-
straints to check arê̂x.N/ = v.N/ and ˆ̂x.e/ ≥ w.e/ for e∈ E\E.

⋃
D/. All

other constraints directly follow from Lemma 4.11.

Let M ∈M∗ be x̂-tight and decompose it as

M = MC ∪ MT;D ∪ MD

as usual. SinceMD ∈M∗
D is alsox̂-tight by Lemma 4.11, we conclude that

x̂.MC ∪ MT;D/ = w.MC / + w.MT;D/ = ˆ̂x.MC ∪ MT;D/ by definition of ˆ̂x.
Hence ˆ̂x.N/ = x̂.N/ = v.N/.
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Secondly, let us considere∈ E\E.
⋃
D/. If e∈ E.T ∪

⋃
C/ then ˆ̂x.e/ ≥

w.e/ by definition of ˆ̂x. (Recall thatÞ j = x̂i −wi ≤ 0 for all i ∈
⋃
D j.) Thus

we are left with edges betweenT and
⋃
D. Supposê̂x.e/ < w.e/ for such

an edge joining, say,D ∈ Di with k ∈ Tj. Then ˆ̂x.e/ < w.e/ impliesÞi < Þ j.
Sincex̂ is flexible, there exists an̂x-tight matchingM ∈M∗ not coveringD.
SinceD is factor-critical (and̂x−w is constant onD), we may assume thatM
does not match the end point ofe in D. SinceM is x̂-tight, k ∈ Tj is matched
into D j by some edgef ∈ M (cf. Proposition 4.3). But thenM′ = M\ f ∪ e
has x̂.M′/− w.M′/ = x̂.M/ − w.M/ + Þi − Þ j < x̂.M/ − w.M/ = ž̂1, a
contradiction.

• ˆ̂ž1 ≤ ž1: We show that in general̂̂P1.ž/ ⊆ P1.ž/. Supposex ∈ ˆ̂P1.ž/.
Thenx.M/ ≥ w.M/+ ž for all M ∈ M∗

D. Sincex ≤ w on
⋃
D, this also

impliesx.M/ ≥ w.M/+ ž for all M ∈MD. (Use an augmenting path argu-
ment.) Sincex.e/ ≥ w.e/ for all e∈ E\E.

⋃
D/, we further conclude that

x.M/ ≥ w.M/+ ž for all M ∈M.

• Finally, we verify thatP1.ž1/ = ˆ̂P1. ˆ̂ž1/. We have just proved that “⊇”
holds. Conversely letx∈ P1.ž1/. Thenx∈ P̂1.ž̂1/ and by Lemma 4.11x satis-

fies all constraints of̂̂P1. ˆ̂ž1/ except possiblyx.e/≥w.e/ for e∈ E\E.
⋃
D/.

Thus lete∈ E\E.
⋃
D/. Pick M ∈M∗

D not covering the end point ofe in⋃
D, so thatM ∪ e is a matching again. Then, sincex ∈ P1.ž1/, we have

x.M ∪ e/ ≥ w.M/ + w.e/ + ž1, and sinceM ∈ M∗
D is x-tight, we have

x.M/ = w.M/+ ž̂1. Sincež1 = ž̂1, the claim follows. �

As mentioned before, the least core of a node matching game can also be

described by the polyhedron̂̂P1. ˆ̂ž1/ = ˆ̂P1.0/ if the core is nonempty.

For general matching games it is not possible to characterize the least core by

a polyhedron of the form̂̂P1. ˆ̂ž1/. The following example shows that already
for a node matching game withnegativenode weights this is not possible.

Example 4.7 Consider the matching game (N; v) obtained from a graphG
with edge weightingw as shown in Figure 4.7. This edge weighting can
be obtained from only one node weighting, namelyw given byw1 = w2 =
−1; w3 = 2 andw4 = w5 = 3. Sow1 andw2 are strictly negative.

The setT = {3} is the Tutte set satisfying conditions (i) and (ii) of Theorem
4.4. Both odd components ofG\T, D1 = {1} and D2 = {2}, contain only
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one node. However, core(N; v) is empty and it is immediately clear that any
allocationx in the least core hasx.e/ < 1 for at least one edgee∈ E. �

4.3.2 The nucleolus of node matching games

Recall from Section 2.3 that the nucleolus can be computed by solving the
following sequence of linear programs:

.P1/ max ž

s:t: x.S/ ≥ v.S/+ ž .S =∈ {∅; N}/
x.N/ = v.N/

with optimum valuež1,

.P2/ max ž

s:t: x ∈ P1.ž1/

x.S/ ≥ v.S/+ ž .S =∈ Fix P1.ž1/ /

with optimum valuež2, etc. until the nucleolus�.N; v/ is finally determined
as the unique solutionx∗, ž∗ = žr of

.Pr / max ž

s:t: x ∈ Pr−1.žr−1/

x.S/ ≥ v.S/+ ž .S =∈ Fix Pr−1.žr−1/ /:
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By Theorem 4.9 (P1) is equivalent to. ˆ̂P1/ in the sense that they define the
same set of optimal solutions. As we shall see, similar equivalent formulations
can be found for (Pk), k≥ 2. Define recursively

.
ˆ̂Pk/ max ž

s:t: x ∈ ˆ̂Pk−1. ˆ̂žk−1/

x.e/ ≤ w.e/+ ž1− ž .e∈ E.
⋃
D/;e =∈ Fix ˆ̂Pk−1. ˆ̂žk−1/ /

x.e/ ≥ w.e/− ž1+ ž .e∈ E\E.
⋃
D/;e =∈ Fix ˆ̂Pk−1. ˆ̂žk−1/ /

xi ≥ −ž1+ ž .i ∈ N; i =∈ Fix ˆ̂Pk−1. ˆ̂žk−1/ /:

As before, let ˆ̂žk denote the optimum value of (ˆ̂Pk) and define ˆ̂Pk.ž/ in the
obvious way.

Theorem 4.10 We havežk = ˆ̂žk and Pk.žk/ = ˆ̂Pk. ˆ̂žk/ for k = 1; : : : ; r. In

particular, ˆ̂P1. ˆ̂ž1/ ⊃ : : : ⊃ ˆ̂Pr = {x∗} defines the nucleolus�.N; v/.

Proof: For k = 1 the claim is equivalent to Theorem 4.9. We proceed by

induction onk. Assume thatžk−1 = ˆ̂žk−1 andPk−1.žk−1/ = ˆ̂Pk−1. ˆ̂žk−1/. The
induction step amounts to show the following two things.

(i) Pk.ž/ ⊆ ˆ̂Pk.ž/ (implying that ˆ̂žk ≥ žk) :

Let x ∈ Pk.ž/. Thenx ∈ P1.ž1/ = ˆ̂P1. ˆ̂ž1/, so x satisfiesx ≥ 0, xi = xD −
wD+wi ≤wi for all i ∈ D; D ∈D, andx.M/=w.M/+ ž1 for all M ∈M∗

D.

We first considere∈ E\E.
⋃
D) and show thatx.e/ ≥ w.e/− ž1+ ž unless

e∈ Fix ˆ̂Pk−1. ˆ̂žk−1/ = Fix Pk−1.žk−1/. ChooseM ∈M∗
D such thatM ∪ e is a

matching. (Existence follows from the fact that eachD ∈D is factor-critical.)

SinceM is fixed by ˆ̂P1. ˆ̂ž1/ = P1.ž1/, it is fixed by ˆ̂Pk−1. ˆ̂žk−1/. Hencee∈
Fix ˆ̂Pk−1. ˆ̂žk−1/ if and only if M ∪ e ∈ Fix ˆ̂Pk−1. ˆ̂žk−1/. Since we assume

thate =∈ Fix ˆ̂Pk−1. ˆ̂žk−1/, we haveM ∪ e =∈ Fix Pk−1.žk−1/ and thusx∈ Pk.ž/

implies x.M ∪ e/ ≥ w.M ∪ e/+ ž. Together withx.M/ = w.M/+ ž1 this
yieldsx.e/ ≥ w.e/− ž1+ ž.
In the same way we can show thatxi ≥−ž1+ ž for a nodei =∈ Fix ˆ̂Pk−1. ˆ̂žk−1/.

Next considere∈ E.
⋃
D/, saye∈ E.D/ for D ∈ D. We show thatx.e/ ≤

w.e/+ ž1− ž unlesse is already fixed byˆ̂Pk−1. ˆ̂žk−1/ = Pk−1.žk−1/. Since
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xi − wi = xj − w j for all i; j ∈ D, we conclude thatx.e/ − w.e/ is inde-
pendent of the particular choice ofe∈ E.D/. Choose anyM ∈ M∗D and as-
sume without loss of generality thate∈ M ∩ E.D/ is not fixed byPk−1.žk−1/.
Sincex.M/ is fixed (tow.M/+ ž1), we conclude thatM\e =∈ Fix Pk−1.žk−1/.
Hencex ∈ Pk.ž/ implies x.M\e/ ≥ w.M\e/ + ž. Together withx.M/ =
w.M/+ ž1 we getx.e/ ≤ w.e/+ ž1− ž.

(ii) ˆ̂Pk.ž/ ⊆ Pk.ž/ (implying thatžk ≥ ˆ̂žk):

Let x∈ ˆ̂Pk.ž/. Again this impliesx∈ ˆ̂P1. ˆ̂ž1/, sox≥ 0, xi = xD−wD+wi ≤
wi for all i ∈ D; D ∈ D andx.MD/ = w.MD/+ ž1 for all MD ∈M∗

D.

We are to show thatx.S/≥ v.S/+ ž for S⊂ N not yet fixed byPk−1.žk−1/=
ˆ̂Pk−1. ˆ̂žk−1/. Sincex ≥ 0, we may only considerS= N.M/ for M ∈ M.
Furthermore, sincex.e/ ≥ w.e/ on E\E.

⋃
D/, we may restrict ourselves

to M ⊆ E.
⋃
D/. Finally, sincexi = xD − wD +wi for all i ∈ D; D ∈ D;

x.M/−w.M/ only depends on|M ∩ D| for eachD ∈ D. So we may without
loss of generality assume thatM ⊆ MD for someMD ∈ M∗

D. Assume that
M is not fixed byPk−1.žk−1/. SinceMD is fixed byPk−1.žk−1/, we conclude
that MD\M is not fixed byPk−1.žk−1/. So at least somee∈ MD\M is not

fixed by Pk−1.žk−1/. Hencex ∈ ˆ̂Pk.ž/ implies x.e/ ≤ w.e/ + ž1− ž. All
other edgesf ∈ MD\M satisfy x. f / ≤ w. f / (as x ≤ w on

⋃
D). Hence

x.MD/ = w.MD/+ ž1 impliesx.M/ ≥ w.M/+ ž as required. �

Clearly, the number of constraints in each linear program.
ˆ̂Pk/ is bounded by

a polynomial in|N|. The size of the parametersˆ̂žk .1= 1; : : : ; r / is bounded
by a polynomial in< N; v > (cf. Remark 2.1). Then we can conclude that

Corollary 4.4 The nucleolus of a node matching game (N; v) can be com-
puted in polynomial time. �

We end this section by giving an explicit formula for the nucleolus in case
the graph (N; E) with node weightingw satisfies some extra conditions. First
consider the following observation.

Proposition 4.4 Let i; j be two nodes in a component D∈ D that are not
connected. Let (N; v′) be the node matching game obtained from (N; v) by
adding the edge.i; j/ to G. Then�.N; v′/ = �.N; v/.
Proof: The proof is straightforward, noting the fact that for all allocations

x∈ P1.ž1/ = ˆ̂P1. ˆ̂ž1/

xk−wk = xl −wl for all k; l ∈ D:
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So adding the edge (i; j) does not yield any new equations in the linear pro-

grams. ˆ̂Pk/ .k= 1; : : : ; r /. �

Now supposeT ∪
⋃
C is empty. Let

D = S1∪ : : : ∪ Sl

be the partition ofD such that all componentsD ∈ D with equal size|D|
are in the same subcollectionSi, and |D| < |D′| for D ∈ Si, D′ ∈ S j and
1≤ i < j ≤ l .

We say that a node weighting issymmetricif we can order the nodes in any
two componentsD; D′ ∈ D with |D| = |D′| as i1; : : : ; i|D| and j1; : : : ; j|D|
such that

wir = w jr .r = 1; : : : ; |D|/:

Below we give an expression for the nucleolus in caseT ∪
⋃
C is empty and

w is symmetric.

Theorem 4.11 Let T∪
⋃
C be empty and letw : N → R+ be symmetric.

Then the nucleolus of (N; v) is equal to the allocation x∗ ∈ RN given by

x∗i =
 wi −wD

min if i ∈
⋃
S1∪ : : : ∪

⋃
Sk−1

wi − Þ if i ∈
⋃
Sk

wi if i ∈
⋃
Sk+1∪ : : : ∪

⋃
Sl ;

where1 ≤ k ≤ l is taken as small as possible in such a way that a number
Þ ≥ 0 exists with the property that x∗ ∈ RN is of the form above, x∗ ≥ 0 and
x∗.N/ = v.N/.
Proof: First suppose core(N; v) is nonempty. Letx ∈ core(N; v). By Theo-
rem 4.6 xi = 0 if i ∈ N is an isolated node. By Proposition 4.2xi = wi holds
for all D ∈ D with |D| > 1. So core(N; v) contains exactly one allocation,
which must be the nucleolus. ChooseÞ = 0. If a componentD ∈ S1 has size
|D| > 1 then letk= 1. Otherwise letk= 2.

Suppose core(N; v) is empty. As a first step in computing the nucleolus we

have to determine the optimal valuež1 of .P1/ = . ˆ̂P1/. Note that maximizing
ž comes down to maximizing∑

D∈D
.|D| − 1/xD:
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So we maximizexD on componentsD with |D| as large as possible in such a

way that the constraints of. ˆ̂P1/ : x.N/ = v.N/; x= x̄; xD ≤ wD .D ∈ D/
andx≥ 0, are met. Then it is clear that in this wayk has to be chosen as small
as possible such that the resulting vectorx∗ has

x∗i = wi −wD
min if i ∈

⋃
S1∪ : : : ∪

⋃
Sk−1

x∗i = wi if i ∈
⋃
Sk+1∪ : : : ∪

⋃
Sl ;

and x∗.
⋃
Sk/ = x∗.N/− x∗.N\

⋃
Sk/ such thatx∗i − wi = x∗j − w j for all

i; j ∈ D; D ∈ Sk and x∗.
⋃
Sk/ ≥

∑
D∈Sk

.w.D/ − |D|wD
min/ (then x∗ ≥ 0).

Also the nucleolus is of the same form asx∗.

By Proposition 4.4 we may without loss of generality assume that eachD ∈D
is a complete graph. SupposeD; D′ ∈ Sk. Order the nodes ofD asi1; : : : ; i|D|
and the nodes ofD′ as j1; : : : ; j|D| such that

wir = w jr .r = 1; : : : ; |D|/:

Recall that the nucleolus satisfiesSym. Define a permutation³ : N→ N as
follows:

³.k/ =
 j r if k= i r .r = 1; : : : ; |D|/

i r if k= j r .r = 1; : : : ; |D|/
k otherwise:

Thenv³.S/ = v.S/ for all S⊆ N. If we want the nucleolus to be equal tox∗

then, according toSym, x∗ must be chosen such thatx∗ir = x∗jr for 1≤ r ≤ |D|.
This implies that for alli ∈

⋃
Sk x∗i = wi − Þ for some 0≤ Þ ≤ wi. �

4.3.3 Cardinality matching games

As mentioned before, cardinality matching games are a subclass of the class
of node weight matching games with node weighting equal to a half for all
nodes.

Below we assume that (N; v) is a cardinality matching game defined by a
graph (N; E). Again T ⊆ N is the Tutte set satisfying the conditions (i) and
(ii) in Theorem 4.4. Sincew ≡ 1

2 > 0, Theorem 4.8 reduces to the following
simple observation (for a characterization, see also Deng, Ibaraki and Nag-
amochi [1999]).



100 Matching games

Corollary 4.5 The cardinality matching game.N; v/ has nonempty core if
and only if|D| = 1 for all D ∈ D. �

Because all nodesi ∈ N have the same positive weightwi = 1
2, the setM̃∗

coincides with the setM∗. FurthermorewD = 1
2 for all D ∈ D. Then the

linear program. ˆ̂P1/ describing the least core can be written as

.
ˆ̂P1/ max ž

s:t: xi = xD .i ∈ D; D ∈ D/
xi ≤ 1

2 .i ∈
⋃
D/

x.e/ ≥ 1 .e∈ E\E.
⋃
D//

x.N/ = v.N/
x.M/ ≥ |M|+ ž .M ∈M∗

D/
x ≥ 0;

wherev.N/ = |⋃C|+ |T|+∑D∈D
1
2.|D| − 1/. This way we have obtained

the characterization of the least core as presented in Kern and Paulusma [2000].
Becausew ≡ 1

2 is symmetric, we can apply Theorem 4.11 (cf. Example 4.5).

Corollary 4.6 If T ∪
⋃
C is empty, then the nucleolus of (N; v) is equal to

the allocation x∗ ∈ RN given by

x∗i =


0 if i ∈

⋃
S1∪ : : : ∪

⋃
Sk−1

1
2 − Þ if i ∈

⋃
Sk

1
2 if i ∈

⋃
Sk+1∪ : : : ∪

⋃
Sl ;

where1 ≤ k ≤ l is taken as small as possible in such a way that a number
Þ ≥ 0 exists with the property that x∗ ∈ RN is of the form above, x∗ ≥ 0 and
x∗.N/ = v.N/. �



Chapter 5

Competition games

We consider a class of games related to sports competitions, in which various
teams play matches against each other in pairs according to a previously de-
termined schedule. At some stage of the competition a team may try to bribe
some other teams in order to win the competition. Those other teams form the
player set in the competition game introduced in Section 5.1. The difficulty
here is deciding whether bribing yields the desired result or not. Therefore, in
Section 5.2 we first try to solve the problem whether it is possible at all that at
some stage of a competition a certain team can end up with the highest final
score. The computational complexity of this problem turns out to depend on
the way scores are allocated according to the outcome of a match. We deter-
mine the complexity for all possible score allocation rules. In Section 5.3 we
return to our competition game and give an algorithm to compute the value of
a coalition.

5.1 Introduction

Consider a sports competition like a national soccer league, in which all par-
ticipating teams play against each other in pairs (matches) according to a pre-
fixed schedule. Initially all teams have total score zero. When a team partic-
ipates in a match, its total score is increased byÞ ∈ R if it loses the match,
by þ ∈ R if the match ends in a draw, and by
 ∈ R if it wins the match. We
always assume thatÞ ≤ þ ≤ 
 and call the triple (Þ; þ; 
) the rule (score al-
location rule) of the competition. In case of a soccer competition, the former
FIFA rule was.Þ; þ; 
/ = .0;1;2/, but this has been changed into the new

101
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rule .Þ; þ; 
/ = .0;1;3/. Other sports like chess or draughts still use the rule
.Þ; þ; 
/ = .0;1;2/, while stratego, also a strategic board game, has as score
allocation rule.Þ; þ; 
/ = .0;1;6/.
At some stage of the competition a team may ask whether it still has a (theo-
retical) chance of “winning” the competition, i.e, ending up with the highest
final total score. If this is possible it may try to bribe some other participating
teams. Here we assume that both teams have to be involved if the end result
of a match must be set to a draw and that in case of a win/loss match only the
losing team has to be bribed.

We use the following notations.̄N denotes the (finite)set of teamsparticipat-
ing in the competition. The team in this set that wants to bribe its opponents
is denoted byt0. At a certain stage of the competition the position of each
team in the ranking is determined by thecurrent score vector s∈ RN̄, where
si is the current score of teami ∈ N̄ . The set of remaining matches is denoted
by M. It is possible that two matchesm1 andm2 in M have the same pair of
teams.i; j/ playing against each other. Thestate of a competitionis given by
a triple.N̄; s;M/.

Definition 5.1 Given a rule (Þ; þ; 
) and a state of a competition (N̄; s;M), a
competition game(N; v) consists of a setN = N̄\t0 and characteristic func-
tion v : 2N→ R+ that is of the form

v.S/ =
{
v∗ if t0 wins the competition after bribingS
0 otherwise;

wherev∗ ≥ 0 is called thebribeof the competition. �

Clearly, a valuev.S/ does not only depend on the state of the competition but
also on its rule. A coalitionS is called influential if v.S/ = v∗. In that case
v.S/ can be interpreted as the price that is agreed by botht0 and coalitionS
for cheating the competition. If bribingSdoes not guaranteet0 to win, then
t0 has no interest in coalitionSandv.S/ = 0. If another influential coalition
is cheaper, thent0 would not do business withS. Therefore, all prices are set
equal to the same amountv∗.

Example 5.1 Consider some sports competition with rule.0;1;2/ and state
.N̄; s;M/ given by the tables below.



5.2 The sports competition problem 103

teams scores

t0 10
t1 9
t2 6
t3 3
t4 2

remaining
matches

t0− t2
t0− t3
t3− t0
t1− t4
t4− t1

Then a competition game.N; v) is determined byN = {t1; t2; t3; t4} andv :
2N→ R+ given by

v.S/ =
{
v∗ if t1 ∈ Sor t3 ∈ S
0 otherwise:

�

Since we would have a trivial game ifv.N/= 0, we only consider competition
games (N; v) with v.N/ = v∗ > 0. In those competitions teamt0 still has
a chance to achieve the highest final score. Then the question arises how
difficult it is to check whether this condition holds or not. In the next section
we solve this problem.

5.2 The sports competition problem

5.2.1 The model

In this section we determine the computational complexity of the problem

”Given a competition with state (̄N; s;M/ and rule (Þ; þ; 
) has team t0 still
a chance to win the competition?”

To analyze this we may without loss of generality assume thatt0 wins all its
remaining matches, resulting in a final total scores̃0 for t0. The current score
si of a teamti 6= t0 only has to be adjusted, ifti had to play againstt0 and
Þ 6= 0. As we shall see later on, we may assumeÞ = 0. So we still denote
the (possibly adjusted) scores of the other teams bysi. The problem is now
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whether the teamsti 6= t0 can finish the remaining matches in such a way
that eachti collects at mostci := s̃0− si additional score points. (We permit
the situation thatt0 shares the first place in the final ranking with some other
teams.)

This can be modeled by a multigraphG= .V; E/, whose nodes correspond
to teamsti 6= t0 and edges are in 1-1 correspondence with remaining matches.
Each nodei ∈ V has capacityci ∈ R, as defined above. We represent the
outcome of a matche= .i; j/ by directing the edge from the winner to the
loser (and leaving the edge undirected in case of a draw). This way we obtain
a partially oriented graph, i.e., a graph with an edge set that contains both
directed and undirected edges.

Because it will turn out that the computational complexity of our sports com-
petition problem (SC) depends on the rule (Þ; þ; 
) of the competition, we
subdivide our problem into the classes SC(Þ; þ; 
).

Definition 5.2 SPORTS COMPETITION (SC(Þ; þ; 
))

Instance: A multigraphG= .V; E/ and node capacitiesc∈ RV.

Question: CanG be partially oriented such that for each nodei ∈ V:

ÞŽ−.i /+ þŽ0.i /+ 
Ž+.i / ≤ ci ? (5.1)

Here, as usual,Ž+ and Ž− denote the outdegree and indegree of a node,
whereasŽ0 denotes the number of incident unoriented edges. A partial ori-
entation ofG satisfying the capacity constraints (5.1) is called asolutionof
the instance (G; c). �

Below we give an example of an instance of SC(0;1;2).

Example 5.2 Consider some sports competition with rule.0;1;2/ and state
.N̄; s;M/ given by the tables below.

teams scores

t0 8
t1 7
t2 7
t3 5
t4 3

remaining
matches

t0− t2
t1− t2
t2− t1
t1− t3
t3− t4
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If we assume thatt0 wins its remaining matcht0− t2, then the final score for
t0 is s̃0 = 10 and the capacity vectorc ∈ R4 is given byc= .3;3;5;7/. The
corresponding instance of SC(0,1,2) is the (unoriented) graphG with node
capacity vectorc (cf. Figure 5.1). Figure 5.2 shows a solution of (G; c). Sot1

  t

4  t 3  t

2

(5)(7)

1  t

  (3) (3)

Figure 5.1

  t

4  t 3  t

2

(7) (5)

1  t

  (3) (3)

Figure 5.2

beatst2 and vice versa. Furthermore,t3 wins its remaining match againstt2,
and the match betweent3 andt4 ends in a draw. This results in the final table

teams scores

t0 10
t1 9
t2 9
t3 8
t4 4

Hence at the given stage of the competition it is still possible for teamt0 to
end up with the highest final total score. �
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In the literature a simplified version of the sports competition problem (disal-
lowing draws) is known. In that case the problem reduces to a flow problem,
cf. Cook, Cunningham, Pulleyblank and Schrijver [1998] or the section be-
low. As we shall see, however, the question becomes more interesting if draws
may occur. Our main result, which has been proved independently by Bern-
holt, Gülich, Hofmeister and Schmitt [1999], implies that in caseÞ < þ < 


the problem is polynomially solvable if and only ifÞ + 
 = 2þ (assuming
P 6= NP). This means that for games like draughts and chess the problem is
polynomially solvable.

A lot of sports competitions, such as the FIFA soccer competitions, have the
property that each participating team has to play the same number of matches
against every other team. We call this type of competitionsclosed. We
can split a class SC(Þ; þ; 
) into a subclass of closed competitions with rule
(Þ; þ; 
) and a subclass ofopen competitions, where the property mentioned
above does not hold (e.g., large one- or two-day open tournaments). A cou-
ple of years ago the FIFA exchanged the rule (0;1;2) for the current rule
(0;1;3). Therefore we are especially interested in the computational com-
plexity of SC restricted to closed competitions. We show that the complexity
does not change under this restriction. This implies that for soccer competi-
tions, by changing the score allocation rule into the rule.Þ; þ; 
/ = .0;1;3/,
the problem has becomeNP-complete. Also for stratego competitions the
problem isNP-complete.

We end our introduction with the following simple observation. Given an
instance (G; c) of SC(Þ; þ; 
), we can derive an equivalent instance (G; c′) of
SC(0; þ− Þ; 
 − Þ) by settingc′i := ci − ÞŽ.i /. (Here,Ž refers to the degree
in G.) So with respect to computational complexity of SC(Þ; þ; 
) we may
always assume that (Þ; þ; 
) is normalized, in the sense thatÞ = 0≤ þ ≤ 
.

5.2.2 Complexity results

Our main result (cf. Kern and Paulusma [2001]) completely determines the
computational complexity of the sports competition problem. In cases where
SC(Þ; þ; 
) turns out to beNP-complete we prove this by reduction from
3-dimensional matching. This is a well-knownNP-complete problem (cf.
Garey and Johnson [1979]).
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3-DIMENSIONAL MATCHING (3DM)

Instance: three disjoint setsX;Y;W with the same number of elementsq and
a subsetR⊆ X× Y×W.

Question: DoesR contain a (3-dimensional) matching, i.e., is there a subset
of triplesR′ ⊆ Rsuch thatR′ covers each element ofX∪Y∪W exactly once?

(In Bernholt, Gülich, Hofmeister and Schmitt [1999]NP-completeness is
proved by a reduction from theNP-complete problem 3-SATISFIABILITY,
see Garey and Johnson [1979].)

Theorem 5.1 SC(Þ; þ; 
) is polynomially solvable in each of the following
three cases:

(i) Þ = þ
(ii) þ = 


(iii) Þ+ 
 = 2þ.

In all other cases the problem isNP-complete.

Proof: First recall that we may assume that (Þ; þ; 
) is normalized, soÞ = 0.
(Note that normalization does not affect cases (i)-(iii).)Case (i)is then trivial.
Indeed, an instance (G; c) has a solution if and only ifc≥ 0. (Leave all edges
unoriented.)

In all other cases we haveþ > 0. By scaling we may assume thatþ = 1.
(Divide þ; 
 as well asc by þ.)

Case (ii) þ = 
 = 1 (corresponding with the exclusion of draws).

Consider an instance given byG= .V; E/ andc ∈ RV. Construct a directed
bipartite graph with node setsV and E and arcs linking eachi ∈ V to all
edges inE incident with i in G. Then add an additional sources and sink
t as indicated in Figure 5.3. The arcs froms to V all get lower capacity 0
and upper capacitybcic .i ∈ V/. The arcs fromV to E get lower capacity
0 and upper capacity 1. The arcs fromE to t get lower capacity and upper
capacity 1. The resulting network has a feasibles-t flow x ∈ R|V|+3|E| if and
only if our instance (G; c) has a solution. Indeed, as all capacities are integral,
a feasible flow may also be assumed to be integral (cf. Theorem 1.4). Given
an integral feasible flow we can interpret an arc (i; .i; j/) from V to E that
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Figure 5.3

carries 1 unit of flow asi winning the matche= .i; j/ and conversely (cf.
also Cook, Cunningham, Pulleyblank and Schrijver [1998]).

Case (iii) þ = 1; 
 = 2 (ancient FIFA rule).

This can be solved similarly. In the network of Figure 5.3 we simply redefine
the upper capacities of all arcs fromV to E to be 2. The lower and upper
capacities of arcs fromE to t are also set to 2. Again, feasible integral flows
are in 1-1 correspondence with solutions of our instance (G; c). Each node
e∈ E in our network has two incoming arcs that carry a total flow of 2 units,
distributed as 2 : 0 or 1 : 1, corresponding to a win/loss match or a draw.

To prove the last part of the theorem we make a distinction between the case
“þ = 1; 
 > 2” and “þ = 1;1< 
 < 2”. Since we can guess an outcome of
the remaining matches and compute the final scores, in both cases SC(Þ; þ; 
)
is a member ofNP.

Case (iv)þ = 1; 
 > 2.

We proveNP-completeness by reduction from 3DM. Suppose|X| = |Y| =
|W| = q and R⊆ X× Y×W is given. We are to determine whetherR con-
tains a matchingR′ ⊆ R. Assume without loss of generality that each element
z∈ X∪Y∪W actually occurs in some tripler ∈ R. We writez∈ r to indicate
thatz occurs inr ∈ R.
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Given R⊆ X×Y×W, we construct a graphG= .V; E/ as follows. We first
make one copy of each elementz∈ X∪Y∪W for each occurrence ofz in R,
i.e., we define

X̄ := {.x; r / | x∈ X; r ∈ R; x∈ r}
Ȳ := {.y; r / | y∈ Y; r ∈ R; y∈ r}
W̄ := {.w; r / | w ∈W; r ∈ R; w ∈ r}:

Construct a graphG= .V; E/with node setV = X∪Y∪W∪ X̄∪ Ȳ∪ W̄∪ R
and edges as defined by the incidence relations in a straightforward way, i.e.,

E = {.x; .x; r // | .x; r / ∈ X̄}
∪ {.y; .y; r // | .y; r / ∈ Ȳ}
∪ {.w; .w; r // | .w; r / ∈ W̄}
∪ {.r; .x; r // | .x; r / ∈ X̄}
∪ {.r; .y; r // | .y; r / ∈ Ȳ}
∪ {.r; .w; r // | .w; r / ∈ W̄} (cf. Figure 5.4 below):

Next define node capacitiesc∈ RV as follows:

...
R

...
r

...

  W

(w,r)

w

W

...

...
X

(x,r)

x

X
(y,r)

...
Y

Y

y

...

Figure 5.4
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c ≡ 1 on X∪ Y
c ≡ 1+ 
 on X̄∪ Ȳ
c ≡ max{
;3} on R
c ≡ 1 onW̄
c ≡ 
.Ž− 1/+ 1 onW:

(Again,Ž refers to the degree function ofG.)

We claim that this instance (G; c) has a solution if and only ifR contains a
matching.

“⇐” SupposeR′ ⊆ R is a matching. Define a corresponding partial ori-
entation ofG as follows. For eachw ∈ W choose the uniquer ′ ∈ R′ with
.w; r ′/ ∈ W̄. We leave the edge.w; .w; r ′// unoriented and orient all other
edges fromw to W̄. This way the capacity constraints ofw are met. For each
r ′ = .x; y; w/ ∈ R′ we orient the edge.r ′; .w; r ′// from r ′ towards.w; r ′/ and
the edges.r ′; .x; r ′// and.r ′; .y; r ′// from X̄ respectivelyȲ towardsr ′. All
edges incident withr ∈ R\R′ remain unoriented. This way we ensure that the
capacity constraints on̄W and R are respected. Finally, orient all edges be-
tweenX̄ andX from X̄ towardsX except those that correspond to an element
in R′ (these remain unoriented). This way the capacity constraints forX and
X̄ are met. We orient edges betweenȲ andY in the same way. This partial
orientation gives a solution of the instance (G; c).

”⇒” Conversely, suppose we are given a partial orientation ofG respecting
the capacity constraints. The latter imply that forx ∈ X we haveŽ−.x/ ≥
Ž.x/− 1 andŽ+.x/ = 0. We may assume without loss of generality that ac-
tually Ž−.x/ = Ž.x/− 1. (Otherwise, i.e., ifŽ−.x/ = Ž.x/, pick an arbitrary
edge incident withx and make it unoriented. The modified orientation will
still respect all capacity constraints.) A similar argument holds for elements
y ∈ Y. Nodes inX̄ have degree 2. In view of their capacity bound 1+ 
, we
may assume without loss of generality that each.x; r / ∈ X̄ hasŽ0 = 1 and
Ž+ = 1. (Otherwise, again modify the solution without violating the capacity
constraints.) As eachx∈ X hasŽ−.x/= Ž.x/−1 andŽ0.x/= 1, we conclude
that

• There are exactly|X| arcs directed from̄X to R. Moreover, if..x; r /; r / is
directed towardsr and..x′; r ′/; r ′/ is directed towardsr ′, thenx 6= x′.

The same holds for the directed arcs fromȲ to R.
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Arguing similarly for nodes inW, we find that eachw ∈ W has without loss
of generalityŽ+.w/ = Ž.w/− 1 andŽ0.w/ = 1. (Otherwise modify the ori-
entation such thatw actually uses its full capacity.) Nodes in̄W have degree
2 and capacity bound 1. Then we may without loss of generality assume that
these nodes haveŽ0 = 1 andŽ− = 1. The above implies that

• There are exactly|W| arcs directed fromR towardsW̄. Moreover, if the
edge.r; .w; r // is directed fromr towards.w; r / and.r′; .w′; r ′// is directed
from r ′ towards.w′; r ′/, thenw 6= w′.
Finally, the capacity constraints onR imply that a noder ∈ Rcan haveŽ+ ≥ 1
only if Ž− ≥ 2. From this and the above observations, it is straightforward to
check that

R′ = {r ∈ R | Ž+.r / = 1}

actually is a matching.

Case (v) þ = 1< 
 < 2.

Again, we proveNP-completeness by reduction from 3DM. In the graphG
of Figure 5.4 we replace the node capacitiesc ∈ RV by node capacities̃c as
follows:

c̃ ≡ 
.Ž− 1/+ 1 on X∪ Y
c̃ ≡ 1 on X̄∪ Ȳ
c̃ ≡ max{2
;3} on R
c̃ ≡ 1+ 
 on W̄
c̃ ≡ 1 onW:

Analogously to Case (iv) one can prove that the instance (G; c̃) has a solution
if and only if R contains a matching. �

Theorem 5.1 is related to the class of all possible sports competitions. Re-
call that this class contains both closed competitions and open competitions.
Because a lot of sports competitions such as the FIFA soccer competitions
are closed, we want to determine the computational complexity of our sports
competition problem restricted to this kind of competition as well. Obviously
for score allocation rules, for which the general sports competition can be
solved in polynomial time, the problem for closed competitions can be solved
efficiently. The following theorem shows that also for the other rules the com-
putational complexity does not change. We call the number of times that each
team plays against every other team theorder² of the competition.
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Theorem 5.2 Consider a class of closed competitions with fixed rule (Þ; þ; 
)
and fixed order². Then the problem of determining whether at a given stage
a certain team can win the competition isNP-complete if

Þ < þ < 
 and Þ+ 
 6= 2þ:

Proof: For the rule (Þ; þ; 
) we again assumeÞ = 0 andþ = 1. If 
 > 2 then
we only have to show that for the instance (G; c), as defined in Case (iv) of
the proof of Theorem 5.1, there exists a closed competition of order² with a
state (̄N; s;M) such that (G; c) is obtained from this state. If 1< 
 < 2 we
have to find an appropriate competition for instance.G; c̃) of Case (v) in the
proof of Theorem 5.1. Because such a closed competition can be constructed
in the same way we only prove the case
 > 2.

Hence let
 > 2 and consider (first) the case² = 1.

In Case (iv) of the proof of Theorem 5.1 we have a graphG= .V; E/ with
node setV = X∪Y∪W∪ X̄∪ Ȳ∪ W̄∪ Rand edges as defined in Figure 5.4.
Furthermore, the node capacitiesc∈ RV are given by

c ≡ 1 on X∪ Y
c ≡ 1+ 
 on X̄∪ Ȳ
c ≡ max{
;3} on R
c ≡ 1 onW̄
c ≡ 
.Ž− 1/+ 1 onW:

We construct a competition that contains (besides teamt0) the teams corre-
sponding withV and, in addition, the following teams:

� for all x∈ X a setH.x/ of Ž.x/− 1 teams;

� for all y∈ Y a setH.y/ of Ž.y/− 1 teams;

� for all w̄ ∈ W̄ a setH.w̄/ of one team;

� for all r ∈ R a setH.r / of two teams.

Let H1 denote the collection of all teams as defined above ,i.e.,

H1 =
⋃
x∈X

H.x/∪
⋃
y∈Y

H.y/∪
⋃
w̄∈W̄

H.w̄/∪
⋃
r∈R

H.r /:
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BesidesH1, we add a set of teamsH2 of size |H2| sufficiently large (as ex-
plained later). Then the set of teams in this competition is

N̄ = V ∪ H1∪ H2∪ {t0}:

The total set of matches between pairs of teams inN̄ has size1
2|N̄|.|N̄| − 1/.

We want the set of remaining matchesM to correspond exactly with the set
of edgesE and a current score vectors in such a way that every teami ∈ V
may collect at mostci additional score points. For this purpose we define the
following outcomes of matches not inE.

� Teamt0 wins all its matches against teams inH2, its matches against teams
in V all end in a draw, andt0 loses all its matches against the teams inH1.

� Matches between teams inV that do not correspond with an edge inE end
in a draw.

� Every teami ∈ X ∪ Y ∪ W̄ wins all its matches against teams inH2, its
matches against teams inH.i / all end in a draw, andi loses all matches against
teams inH1\H.i /.

� Every teami ∈ W wins |H2| − Ž.i /+ 1 matches against teams inH2, all
its other matches against teams inH2 end in a draw, andi loses all matches
against teams inH1.

� Every teami ∈ X̄ ∪ Ȳ wins |H2| − 1 matches against teams inH2, its re-
maining match inH2 ends in a draw, andi loses all matches against teams in
H1.

� If 
 ≤ 3, then every teami ∈ R wins all matches against teams inH2 and
loses its matches againstH.i /. If 
 > 3, then every teami ∈ Rwins |H2| − 1
matches against teams inH2 and its remaining match inH2 plus the matches
against the teams inH.i / end in a draw. In both casesi loses its matches
against teams inH1\H.i /.

� Every teami ∈ H1 loses all matches against teams inH2. Matches between
teams inH1 all end in a draw.

�Matches between teams inH2 end in a draw.

This way t0 has no remaining matches ands̃0 = s0 = |V|+ 
|H2|. Further-
more we have made sure thatci = s̃0− si holds for all teamsti ∈ V.
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Because all teams inH1 ∪ H2 have no remaining matches, they will corre-
spond with isolated nodes if they are added toG. So we have a set of remain-
ing matchesM in 1-1 correspondence with edges inE. However, we still have
to check that teams inH1∪ H2 do not have a final score greater thans̃0. For
all i ∈ H1 we deduce that its score

si ≤ |H1|+ 
 + 
 + .|V| − 1/
 = |H1|+ 
 + 
|V|;
and for alli ∈ H2 we have

si ≤ |H2|+ 
|H1|+ |V|:
It is easy to see that both upper bounds will be smaller than|V|+ 
|H2| = s̃0

provided thatH2 is sufficiently large. Hence we have constructed a competi-
tion with a state.N̄; s;M/ such that (G; c) is obtained from this state (omitting
the isolated nodes).

Above we have assumed that each team plays exactly one time against all
other teams. For a class of competitions with order² > 1 we let²−1 matches
between every pair of teams end in a draw. Then we use the same construction
as in the case² = 1. �

Theorem 5.2 implies that for soccer competitions with the current FIFA rule
(0;1;3) and order for instance 2 or 4 it has indeed becomeNP-complete to
decide whether at a given stage a certain soccer team wins the competition.

5.2.3 Related problems

Examining the proof of Theorem 5.1 we see that the network model we used
for solving cases (ii) and (iii) of our main theorem does not apply for cases in
which the rule (Þ; þ; 
) has the property thatÞ < þ < 
 andÞ+ 
 6= 2þ. Take
for instance the rule.Þ; þ; 
/ = .0;1;3/. If we increase the upper capacities
to 3 on all arcs fromV to E and fromE to t in the network of Figure 5.3, then
a feasible flow does no longer necessarily represent a solution of our instance.
(A total flow of 2 entering a nodee= .i; j/ ∈ E distributed as 2 : 0 on the
two entering arcs does not correspond to a win/loss or a draw.) If we ”repair”
this by introducing a ”capacity gap” ]1;3[ on all arcs fromV to E we get
a flow problem with capacity gaps, which again nicely describes our sports
competition problem. So as a consequence of our result, the following class
of problems is alsoNP-complete.
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Definition 5.3 FLOWS WITH CAPACITY GAPS (FCG)

Instance: A digraphD = .V; A/ with sources and sinkt and for each arc
a ∈ A two disjoint capacity intervalsI1.a/ = [c1.a/; c2.a/] and I2.a/ =
[c3.a/; c4.a/] .ci.a/ ∈ Z; i = 1; : : : ;4/.

Question: Does a (integral)s-t flow x ∈ ZA exist with x.a/ ∈ I1.a/ ∪ I2.a/
.a ∈ A/? �

Corollary 5.1 FCG isNP-complete. �

As to sports competitions, we would like to remark that also other questions
can be treated in the same way. For example ”Is there a chance that team
t0 ends up with the lowest final score?” turns out to be of exactly the same
complexity as SC: Assume thatt0 has a current total scores0 and loses all
remaining matches. This results in a current total scoresi for all other teams
ti 6= t0. The question is now whether the teamsti 6= t0 can finish the remaining
matches in such a way that eachti collectsat least ci := s0 − si additional
score points. Again we model this by a multigraphG= .V; E/ whose nodes
correspond to teamsti 6= t0 and edges are in 1-1 correspondence with remain-
ing matches. Each nodei ∈ V has a (lower) capacityci ∈ R. Our “reverse”
sports competition problem (RSC) can now be formulated as follows.

Definition 5.4 REVERSE SPORTS COMPETITION (RSC(Þ; þ; 
))

Instance: A multigraphG= .V; E/ and node capacitiesc∈ RV.

Question: CanG be partially oriented such that for each nodei ∈ V:

ÞŽ−.i /+ þŽ0.i /+ 
Ž+.i / ≥ ci ? (5.2)
�

It is easy to see that fori ∈ V, (5.2) is equivalent to

.
 − þ/Ž0.i /+ .
 − Þ/Ž−.i / ≤ 
Ž.i /− ci :

Hence an instance.G; c/ of RSC(Þ; þ; 
) corresponds to an instance.G; 
Ž−
c/ of SC(0; 
 − þ; 
 − Þ), and the corollary below immediately follows from
Theorem 5.1.

Corollary 5.2 RSC(Þ; þ; 
) is polynomially solvable in each of the following
three cases:

(i) Þ = þ
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(ii) þ = 

(iii) Þ+ 
 = 2þ.

In all other cases the problem isNP-complete. �

Questions such as ”Is there a chance thatt0 ends up being one of the three
teams that have the three lowest final scores?” can also be treated in a similar
way. Again, assume thatt0 has a current total scores0 and loses all remaining
matches. Choose two teamsti; t j 6= t0, and letti and t j lose their remaining
matches against teamstk .k 6= 0; i; j/. (Choose, if necessary, an arbitrary
outcome for the matches betweenti and t j.) These outcomes result in final
total scores̃s0 = s0, s̃i and s̃j, and current total scoressk for all other teams
tk .k 6= 0; i; j/. If it is possible that the teamstk .k 6= 0; i; j/ can finish the
remaining matches in such a way that eachtk collects at leastck := s̃0− sk

additional score points, thent0 can indeed end up being one of the three lowest
teams. If this is not possible for any pairti; t j, thent0 can never end up being
one of the three lowest teams. So one has to solve at most1

2|N|.|N| − 1/
problem instances in RSC(Þ; þ; 
). Hence also this question is of the same
complexity as SC.

5.3 Competition games

Consider a competition game (N; v) obtained from a sports competition with
state (̄N; s;M) and rule (Þ; þ; 
). Clearly computing the valuev.N/ comes
down to solve the corresponding instance.G; c/ of SC(Þ; þ; 
). Below we
give an algorithm for computing the other valuesv.S/ .S 6= N/. Denote
the set of remaining matches of teamti by Mi. For S⊆ N let GS= .V; E/
be the multigraph whose nodes correspond with the teams inS and whose
edges are in 1-1 correspondence with the remaining matches between teams
in S. In step (1) of the algorithm we assume that, after bribing,t0 will win
its remaining matches against teams inS. However, in our modelt0 will only
bribe a coalitionS if it has an absolute guarantee on winning the competition.
Because there is a probability thatt0 loses its matches inM against teams
outsideS, we reward these kind of matches only withÞ points resulting in
a lower bound̃s0 on its final total score. Obviously there is no guarantee on
winning, if it is possible for a team outsideS to achieve a higher final score
than s̃0. If this situation cannot occur, we proceed with step (4). Recall that
we assume that both teams have to be involved if the end result of a match
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must be set to a draw and that in case of a win/loss match only the losing
team has to be bribed. Under this assumption we let every team inS lose its
remaining matches against teams outsideS. Then it remains to check if the
corresponding instance of SC(Þ; þ; 
) has a solution or not.

Algorithm COMP :

(1) Compute the final total scorẽs0 for t0

s̃0 := s0 + Þ|{m∈ M0 | m= .t0; ti / with ti =∈ S}|

+ 
|{m∈ M0 | m= .t0; ti / with ti ∈ S}|:

(2) Compute the highest final scores̃ that a teamti =∈ Smight achieve

s̃ := max{si + 
|Mi| | ti =∈ S}:

(3) IF s̃0 < s̃ THEN outputv.S/ = 0 and STOP.

(4) Adjust the current scoresi for each teamti ∈ S

si := si + Þ|{m∈ Mi | m= .ti ; t j / with t j ∈ N̄\S}| .ti ∈ S/:

(5) Compute the amountci of additional score points that each team
ti ∈ Smay collect by

ci := s̃0− si .ti ∈ S/:

(6) Solve the instance (GS; c/ of SC(Þ; þ; 
).

(7) IF the answer for (GS; c) is “yes” THEN outputv.S/ := v∗ OTH-
ERWISE outputv.S/ := 0. STOP.

The computational complexity of the algorithm depends on the complexity of
solving an instance of SC(Þ; þ; 
). COMP is a polynomial time algorithm if
and only if SC(Þ; þ; 
) is polynomially solvable.

Let N∗ denote the set ofindispensable teams, which contains all teams that
have to be included in any coalitionS that is bribed byt0. Because obviously
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v.S/ ≤ v.T/ for all S⊆ T ⊆ N, we have

N∗ := {i ∈ N | v.N\i / = 0}:

Note thatN∗ can be computed in polynomial time if the corresponding sports
competition problem SC(Þ; þ; 
) is polynomially solvable.

The following result gives an easy characterization of the core of a competi-
tion game.

Theorem 5.3 Let (N; v) be a competition game withv.N/ = v∗. If N∗ is
empty, then core(N; v) is empty. Otherwise

core.N; v/ = {x∈ I .N; v/ | x.N∗/ = v∗}:
Proof: First supposeN∗ = ∅. Thenv.N\i / = v∗ for all i ∈ N. So if x ∈ RN

were in the core, then

|N|v∗ ≤
∑
i∈N

x.N\i / = .|N| − 1/x.N/;

implying x.N/ > v∗, a contradiction.

SupposeN∗ 6= ∅. Thenv.S/ = 0 if N∗\S is nonempty. Hence any positive
allocationx∈ RN with x.N∗/ = v∗ is a core vector.

Now supposex ∈ core.N; v/. Thenx ≥ 0 andx.N/ = v∗. If N∗ = N we
are finished. Supposei =∈ N∗. Then we deduce fromx.N\i / ≥ v.N\i / = v∗,
x≥ 0 andx.N/ = v∗ thatxi = 0. �

In Example 5.1v.N\i / = v∗ for all i ∈ N. HenceN∗ and core(N; v) are
empty. The example below shows a competition game with a nonempty core.

Example 5.3 Consider a competition with rule.0;1;2/ and state.N̄; s;M/
given by the tables below.

teams scores

t0 10
t1 13
t2 6
t3 5
t4 0

remaining
matches

t0− t2
t0− t3
t1− t4
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The competition game.N; v) is determined byN = {t1; t2; t3; t4} and v :
2N→ R+ given by

v.S/ =
{
v∗ if S= {t1; t2; t3} or S= N
0 otherwise:

ThenN∗ = {t1; t2; t3} and

core.N; v/ = {x∈ RN | x1+ x2+ x3 = v∗; x4 = 0 andx≥ 0}:

�

In the next theorem we prove that the Shapley value of a competition game
(N; v) can easily be computed ift0 only has to bribe the indispensable teams.

Theorem 5.4 Let (N; v) be a competition game with N∗ 6= ∅. If v.N∗/ = v∗,
then the Shapley value� is given by

�i.N; v/ =


v∗

|N∗| if i ∈ N∗

0 otherwise:

Proof: (i) Supposei; j ∈ N∗. Then

v.S∪ i / = 0= v.S∪ j/ for all S⊆ N\{i; j}:

By Theorem 2.4 we know that the Shapley value satisfiesSym. Now define a
permutation³ : N→ N as follows:

³.k/ =
 j if k= i

i if k= j
k otherwise:

It follows thatv³.S/ = v.S/ for all S⊆ N. Then, according toSym,

�i.N; v/ = � j.N; v/ for all i; j ∈ N∗: (5.3)

Also, by Theorem 2.4 the Shapley value satisfiesDum. Supposek =∈ N∗. First
note thatv.N∗/ = v∗ andv.T/ ≤ v.S/ for all T ⊆ S imply thatv.S/ = v∗ if
N∗ ⊆ S. Thenv.S/− v.S\k/ = 0= v.k/ for all S⊆ N. Sok is a dummy in
.N; v). By propertyDumwe have

�k.N; v/ = 0 for all k ∈ N\N∗: (5.4)
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(5.3) and (5.4) imply that

�i.N; v/ =


v∗

|N∗| if i ∈ N∗

0 otherwise:

�

Note that the Shapley value as defined above is a core allocation. However,
the following example makes clear that in casev.N∗/ = 0 the Shapley value
is not necessarily of this form.

Example 5.4 We consider a competition with rule.0;1;2/ and state.N̄; s;M/
given by the tables below.

teams scores

t0 8
t1 7
t2 7
t3 5
t4 1

remaining
matches

t0− t3
t0− t4
t1− t3
t3− t1
t2− t3
t3− t2

Then the competition game (N; v) is defined by set of teamsN= {t1; t2; t3; t4}
and characteristic functionv given by

v.S/ =
{
v∗ if t3 andt4 in Sor S= {t1; t2; t3}
0 otherwise:

HenceN∗ = {t3}. Sincev.t3/ = 0, Theorem 5.4 cannot be applied. Comput-
ing the Shapley value yields�1 = �2 = 1

12v
∗; �3 = 7

12v
∗ and�4 = 3

12v
∗. Note

that the Shapley value of this competition game is not a core allocation.�

Also with respect to the problems mentioned in the previous section (e.g.,
RSC) we can define similar competition games, wheret0 tries to bribe some
other teams. Furthermore, our model can be extended by letting the value
v.S/ depend on the (size of) coalitionS or by including some other teams
that also want to win the competition by means of bribing.
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BERNHOLT, T., A. GÜLICH, T. HOFMEISTER, AND N. SCHMITT [1999],
Football elimination is hard to decide under the 3-point-rule, in:
M. Kutylowski, L. Pacholski, and T. Wierzbicki (eds.),Mathematical
Foundations of Computer Science 1999, Lecture Notes in Computer
Science 1672, 410–418.

BILBAO , J.M. [2000], Cooperative Games on Combinatorial Structures,
Kluwer Academic, Norwell, Massachusetts.

BIRD, C.G. [1976], On cost allocation for a spanning tree. a game theoretic
approach,Networks6, 335–350.

BONDY, J.A.,AND U.S.R. MURTY [1976],Graph Theory with Applications,
Macmillan, London and Elsevier, New York.

COOK, S.A. [1971], The complexity of theorem-proving procedures,Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing,
ACM, New York, 151–158.

COOK, W.J., W.H. CUNNINGHAM , W.R. PULLEYBLANK , AND A. SCHRI-
JVER [1998], Combinatorial Optimization, John Wiley & Sons, New
York.

DAVIS, M., AND M. M ASCHLER [1965], The kernel of a cooperative game,
Naval Research Logistics Quarterly12, 223–259.

DENG, X., T. IBARAKI , AND H. NAGAMOCHI [1999], Algorithmic aspects
of the core of combinatorial optimization games,Mathematics of Op-
erations Research24, 751–766.

DENG, X., AND C.H. PAPADIMITRIOU [1994], On the complexity of
cooperative game solution concepts,Mathematics of Operations
Research19, 257–266.

DRIESSEN, T.S.H. [1991], A survey of consistency properties in cooperative

121



122 Bibliography

game theory,SIAM Review33, 43–59.
DRIESSEN, T.S.H., AND D. PAULUSMA [2001], Two extensions of the

Shapley value for cooperative games,Mathematical Methods of
Operations Research53, 35–49.

EDMONDS, J. [1965a], Maximum matching and a polyhedron with 0;1-
vertices,Journal of Research of the National Bureau of Standards Sec-
tion B69B, 125–130.

EDMONDS, J. [1965b], Paths, trees, and flowers,Canadian Journal of Math-
ematics17, 449–467.

EVANS, R.A. [1996], Value, consistency, and random coalition formation,
Games and Economic Behavior12, 68–80.

FAIGLE, U., AND W. KERN [1992], The Shapley value for cooperative
games under precedence constraints,International Journal of Game
Theory21, 249–266.

FAIGLE, U., AND W. KERN [1993], On some approximately balanced com-
binatorial cooperative games,ZOR - Methods and Models of Operations
Research38, 141–152.

FAIGLE, U., W. KERN, S.P. FEKETE, AND W. HOCHSTÄTTLER [1997], On
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Tudoḿanyos Akad́emia Matematikai Kutató Intézet́enek K̈ozleḿenyei9,
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Notations

The numbers refer to the page of first occurrence.

General

A real numbera is called positive, ifa≥ 0.

R set of real numbers 2
R+ set of positive real numbers 2
Q set of rational numbers 4
Z set of integers 115
N set of positive integers 4
Rn set ofn-dimensional vectors with real components 7
Rn
+ set ofn-dim. vectors with positive real components 75
Qn set ofn-dim. vectors with rational components 4
Zn set ofn-dim. vectors with integer components 115

|N| cardinality ofN 11
2N power set ofN 2
RN set of all functions fromN toR 2
S⊂ T if S is a subset ofT andS 6= T 22
S⊆ T if S is a subset ofT 2
S\T {i ∈ S | i =∈ T} 3
S4 T S\T ∪ T\S 66
S∪ i S∪ {i} 31
S\i S\{i} 16

³ permutation of{1; : : : ;n} 16
f .n/ = O.g.n// f .n/ ≤ cg.n/ for n sufficiently large 4
t.¾/ running time 4
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x vector inRn or function inRN denoted as vector 2
x≥ 0 if xi ≥ 0 for i = 1; : : : ;n 34
xT transpose ofx 8
< x> size ofx if x∈ Qn 4
x³ vector given byx³³.i/ = xi for i = 1 : : : ;n 17
X³ {z∈ RN | z= x³ for somex∈ X} 17
x≤ y if xi ≤ yi for i = 1; : : : ;n 7
x� y if x lexicographically smaller thany 20
½X {½x | x∈ X} 16
X+Y {x+ y | x∈ X; y∈ Y} 16

Game theory

.N; v/ cooperative game (profit game) 2
N player set 2
v characteristic function (profit function) 2
< N; v > size of (N; v) 18
.N; c/ cost game 2
c cost function 2
½v+ a .½v+ a/.S/ = ½v.S/+ a.S/ for all S⊆ N 17
v+w .v+w/.S/ = v.S/+w.S/ for all S⊆ N 17
v³ v³.³.S// = v.S/ for all S⊆ N 17
x.S/

∑
i∈Sxi 2

8 solution concept 15
8.N; v/ if |8.N; v/| = 1 also the allocation itself 17
I .N; v/ set of imputations 15
I ∗.N; v/ set of pre-imputations 16
�.N; v/ nucleolus of (N; v) 21
�.N; v/ Shapley value of (N; v) 31
.LC/ linear program describing the least core 19
( f -LC) linear program describing thef -least core 24

F0 {∅; N} 21
e.S; x/ excess ofSwith respect tox 20
emin.x/ min{e.S; x/ | ∅ 6= S 6= N} 20
�.x/ excess vector with respect tox 20
ef .S; x/ f -excess ofSwith respect tox 26
ef

min.x/ min{ef .S; x/ | ∅ 6= S 6= N} 26
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� f .x/ f -excess vector with respect tox 28

Polyhedral theory

P= P.A;b/ if Ax≤ b describesP 7
Fix P set of coalitions fixed byP 21
' = '.P/ facet complexity ofP 8
P.ž/ {x∈ RN | .x; ž/ ∈ P} 21

Graph theory

.G; w/ discrete structure 17

G= .V; E/ graph 10
V = V.G/ node set 10
E= E.G/ edge set 10
|G′| size of componentG′ 11
G\E′ subgraph obtained by removingE′ 11
G\V′ subgraph obtained by removingV′ 11
G|V′ subgraph induced byV′ 11
Ž.i / degree ofi 10

w node and/or edge weighting 10
< w > maximum size of thew-values 18
w.E′/

∑
e∈E′ w.e/ 10

w.V′/
∑

i∈V′ wi 78

Kn complete graph onn nodes 10
Cn cycle onn nodes 11
P= v0v1 : : : vk path with end pointsv0 andvk 11

.G; l ;u/ network 12
G= .V; A/ directed graph 12
A= A.G/ arc set 11
l lower capacity function defined onA 12
u upper capacity function defined onA 12
Ž−.i / indegree ofi 12
Ž+.i / outdegree ofi 12
h.a/ head ofa 11
t.a/ tail of a 11
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Chapter 3

s supply 36
(N; c) MCST-game 36
c.S/ weight of an MST inG|S∪{s} 36

x∗ standard core allocation corresponding toT∗ 37
Fi.T∗/ set of immediate followers ofi in T∗ 39
Si.x/ set of allocations by strong demand operation onx 41
f i.S/ f i.S/ = 1 if S= {i}, otherwisef i.S/ = 0 42

U set ofk≥ q points 45
W set of 3q points 45
St Steiner node 46
g guardian 46
Ž.S/ x.S/− c.S/+ ž f .S/ 53

f u f .N\u/ .u ∈ U/ 48
f w f .N\w/ .w ∈W/ 48

ž f .D/ |D|+2q−1
|D| f u+3qfw+ f .N\g/+ f .D∪W∪g/ 48

ž f min{ž f .D/ | D ⊆ U coversW} 49

Chapter 4

(N; v) matching game 70
v.S/ value of a maximum weight matching inG|S 70
m∗ size of a maximum matching inG 67

T Tutte set satisfying conditions Theorem 4.4 68
C = C.T/ set of even components ofG\N′ 67
D = D.T/ set of odd components ofG\N′ 67⋃
C union of all even components 67⋃
D union of all odd components 67

MC perfect matching in
⋃
C 67

MD matching inducing a near-perf. matching in allD ∈ D 67
MT;D matching that matchesT completely into

⋃
D 67

E.S/ set of edges joining nodes ofS 77
N.E′/ set of nodes covered byE′ 73
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x.M/ x.N.M// 74
i ∈ D i ∈ N.D/ 78
x.D/

∑
i∈D xi 78

xD
x.D/
|D| 83

wD
w.D/
|D| 84

wD
min minimum weight in a componentD ∈ D 85

x̄ allocation obtained after averagingx w.r.t.w 84
Dmax set of odd components on whichx̄D −wD is max. 87

M set of all matchings inG 76
M̃∗ set of all maximum weight matchings inG 78
M∗ set of all maximum matchings inG 78
MD set of all matchings contained inE.

⋃
D/ 83

M∗
D set of all maximum matchings inMD 88

T0∪ : : : ∪ Tp partition ofT 91
D0∪ : : : ∪Dp partition ofD (flexible) 91
S1∪ : : : ∪ Sl partition ofD (same size) 98

Chapter 5

(Þ; þ; 
) rule of the competition 101
v∗ bribe of the competition 102
² order of the competition 111
.N̄; s;M) state of the competition 102
N̄ set of teams 102
s current score vector 102
M set of remaining matches 102
t0 team that wants to bribe 102

.N; v/ competition game 102
N N̄\t0 102
v.S/ v∗ if S⊆ N is influential, otherwisev.S/ = 0 102
N∗ set of indispensable teams 117

G multigraphG corresponding toN 104
GS multigraphG corresponding toS 116
c node capacity function 104
Ž0.i / number of unoriented edges incident withi 104
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Gülich, A., 106, 107

Gallai, T., 68
Garey, M.R., 3, 6, 106, 107
Gillies, D.B., 2, 18
Grötschel, M., 7, 9, 28
Granot, D., 23, 24, 33, 37–41, 45,

72
Granot, F., 23, 72

H
Hashimoto, T., 28
Hochstättler, W., 6, 28, 45, 46, 72,

76
Hoffman, A.J., 12
Hofmeister, T., 106, 107
Huberman, G., 33, 37–41

I
Ibaraki, T., 6, 99

J
Johnson, D.S., 3, 6, 106, 107

K
König, D., 66
Kern, W., 6, 7, 23, 24, 26–28, 32,

37, 44–46, 60, 72, 76, 77,
100, 106

Khachiyan, L.G., 9
Kruskal, J.B., 12, 34
Kuipers, J., 5, 7, 23, 24, 26, 27, 37,

45, 60

133



134 Author Index

L
Lovász, L., 7, 9, 28, 63, 67

M
Maschler, M., 2, 19, 21, 24, 45
Megiddo, N., 24, 45
Micali, S., 67
Morgenstern, O., 1, 18
Murty, U.S.R., 10

N
Nagamochi, H., 6, 99
Nemhauser, G.L., 3
Neumann, J. von, 1, 18

O
O’Neill, B., 2
Okada, N., 28
Owen, G., 1, 24, 45

P
Papadimitriou, C.H., 3, 7
Paulusma, D., 32, 44, 77, 100, 106
Peleg, B., 19, 21
Plummer, M.D., 63, 67
Potters, J.A.M, 24
Prim, R.C., 34
Pulleyblank, W.R., 106, 108

Q
Quint, T., 72

R
Raghavan, T.E.S., 5, 24, 72
Ransmeier, J.S., 18
Reijnierse, J.H., 24

S
Schmeidler, D., 2, 20
Schmitt, N., 106, 107

Schrijver, A., 3, 7, 9, 28, 106, 108
Shapley, L.S., 2, 19, 21, 25, 31, 63,

72, 79
Shubik, M., 1, 19, 25, 63, 72, 79
Solymosi, T., 5, 24, 72
Sprumont, Y., 32
Steiglitz, K., 3

T
Tijs, S.H., 25

V
Vazirani, V.V., 67

W
Wallmeier, E., 28
Wolsey, L.A., 3

Y
Young, H.P., 28

Z
Zhu, W.R., 23, 24, 45



Subject Index

A
Add, 17
additivež-core, 19
additive solution concept, 17
Additivity, 17
adjacent edges, 10
adjacent nodes, 10
affine combination, 7
affinely independent, 7
algorithm, 4

efficient, 4
exponential time, 5
nondeterministic, 5
polynomial time, 4

algorithm COMP, 116
algorithm of Kruskal, 34
algorithm of Prim, 35
allocation, 2

flexible, 91
individually rational, 15

alternating path, 66
arc, 11

incoming, 11
outcoming, 11

assignment game, 72
assignment problem, 64
augmenting path, 66
averaging w.r.t. node weights, 84

B
bankruptcy game, 2
bipartite graph, 11
bounded polyhedron, 8
bribe, 102

C
cardinality matching game, 72
cardinality matching problem, 66
characteristic function, 2
closed competition, 106
coalition, 2

connected, 52
fixed, 21
influential, 102

combination
affine, 7
convex, 7

competition
closed, 106
open, 106

competition game, 102
complete graph, 10
component, 11

even, 11
odd, 11

computation time, 4
connected coalition, 52
connected graph, 11

135



136 Subject Index

convex combination, 7
convex cone, 7
convex game, 27
convex set, 7
cooperative game, 2
cooperative game in characteristic

function form, 2
core, 18
core allocation, 18
cost function, 2
cost game, 2
cover, 45

exact, 4
minimum, 45

current score vector, 102
cycle, 11

D
decision problem, 3
degree, 10
digraph, 11
dimension of a polyhedron, 8
directed graph, 11
discrete optimization problem, 3
discrete structure, 17
Dum, 16
dummy, 16
Dummy player property, 16

E
edge, 10
edge set, 10
edges

adjacent, 10
efficient algorithm, 4
efficient vector, 2
elimination problem, 13
end point of a path, 11

end point of an edge, 10
ž-core

additive, 19
multiplicative, 24

equality
implicit, 8

even component, 11
EXACT 3-COVER, 4
exact cover, 4
excess, 20
excess vector, 20
EXP, 5
exponential time algorithm, 5

F
facet complexity, 8
factor-critical graph, 67
FCG, 115
feasible flow, 12
feasible priority function, 49
feasible solution, 9
feasible solution set, 3
f -excess, 26
f -excess vector, 28
fixed coalition, 21
f -least core, 24
flexible allocation, 91
flow, 12

feasible, 12
FLOWS WITH CAPACITY GAPS,

115
f -nucleolus, 28
forest, 11
function

submodular, 27

G
Gallai-Edmonds decomposition, 67



Subject Index 137

Gallai-Edmonds Decomposition (the-
orem), 68

game, 2
convex, 27
cooperative, 2
subadditive, 37
superadditive, 19
zero-normalized, 25

grand coalition, 2
graph, 10

bipartite, 11
complete, 10
connected, 11
directed, 11
factor-critical, 67
partially oriented, 104
weighted, 10

H
head of an arc, 11
hyperplane, 8

separating, 8

I
immediate follower, 39
implicit equality, 8
imputation, 15
incident with, 10
incoming arc, 11
Ind, 16
indegree, 12
independent

affinely, 7
linearly, 7

indispensable team, 117
Individual rationality, 16
individually rational allocation, 15
individually rational solution con-

cept, 16

induced subgraph, 11
influential coalition, 102
instance, 4
Inv, 17
Invariance, 17
invariant solution concept, 17
investment game, 25
isolated node, 10

L
leaf, 11
least core, 19

multiplicative, 24
least-tax core, 25
leaving a component uncovered, 78
length of a path, 11
lexicographically smaller vector, 20
linear program, 9
linear programming, 9
linearly independent, 7
lower capacity, 12
lower capacity function, 12
LP, 9

M
marginal contribution, 31
matching, 11

maximum, 66
maximum weight, 64
minimum weight maximum, 70
minimum weight perfect, 68
near-perfect, 67
perfect, 67
3-dimensional, 107
x-tight, 83

matching game, 70
maximum matching, 66
maximum weight matching, 64



138 Subject Index

maximum weight matching prob-
lem, 64

MCST-game, 36
minimum cost spanning tree game,

36
minimum cover, 45
minimum cover graph, 46
minimum node cover, 66
minimum spanning tree, 34
minimum weight maximum match-

ing, 70
minimum weight perfect matching,

68
MST, 34
multigraph, 10
multiplicativež-core, 24
multiplicative least core, 24

N
near-perfect matching, 67
neighbor, 10
network, 12
node, 10

isolated, 10
node class, 11
node cover, 11

minimum, 66
node matching game, 72
node set, 10
node weighting

symmetric, 98
nodes

adjacent, 10
Non, 16
nondeterministic algorithm, 5
Nonemptiness, 16
normalized rule, 106
NP, 5

NP-complete, 6
NP-hard, 7
nucleolus, 20
nucleon, 28

O
objective function, 3
odd component, 11
open competition, 106
optimal solution, 9
order of a competition, 111
outcoming arc, 11
outdegree, 11

P
P, 5
partially oriented graph, 104
path, 11

alternating, 66
augmenting, 66

per-capita nucleolus, 28
perfect matching, 67
player, 1
player set, 2
polyhedron, 7

bounded, 8
rational, 8
unbounded, 9

polynomial reduction, 7
polynomial time algorithm, 4
polynomially transformable, 6
polytope, 8
pre-imputation, 16
prenucleolus, 20
priority function, 25

feasible, 49
problem instance, 4
profit function, 2



Subject Index 139

profit game, 2

R
rank of a matrix, 8
rational polyhedron, 8
reduction

polynomial, 7
REVERSE SPORTS COMPETITION,

115
reversing a matching, 66
RSC(Þ; þ; 
), 115
rule, 101

normalized, 106
running time, 4

S
SC(Þ; þ; 
), 104
score allocation rule, 101
separating hyperplane, 8
separation algorithm, 8
separation problem, 8
set of remaining matches, 102
set of teams, 102
Shapley value, 31
singleton, 17
sink, 12
size of a component, 11
size of a game, 18
size of a problem instance, 4
solution

feasible, 9
optimal, 9

solution concept, 2
additive, 17
individually rational, 16
invariant, 17
symmetric, 17

solution of an instance of SC(Þ; þ; 
),
104

solution set, 3
source, 12
spanning tree, 11
SPORTS COMPETITION, 104
standard core allocation, 37
state of a competition, 102
strong demand operation, 41
subadditive game, 37
subgraph, 11

induced, 11
submodular function, 27
superadditive game, 19
supply, 36
Sym, 16
symmetric node weighting, 98
symmetric solution concept, 17
Symmetry, 16
system of linear inequalities, 7

T
tail of an arc, 11
taxation function, 25
team, 102

indispensable, 117
3-DIMENSIONAL MATCHING, 107
3-dimensional matching, 107
3DM, 107
tree, 11

minimum spanning, 34
spanning, 11

Tutte set, 67

U
unbounded polyhedron, 9
upper capacity, 12
upper capacity function, 12

V
value, 2



140 Subject Index

value of a coalition, 2
vector

efficient, 2
lexicographically smaller, 20

vertex, 8

W
weak demand operation, 39
weighted graph, 10
worth, 2

X
X3C, 4
x-tight matching, 83

Z
zero-normalized game, 25



Summary

In game theory situations of conflict are modeled and analyzed. In such a sit-
uation two or more individuals (the players) with similar or different interests
are taking actions or making decisions. In cooperative game theory players
may form coalitions in order to optimize their profits (or costs).

It is often reasonable to assume that the players decide to work all together.
Then the question arises how to split up the joint profit or cost. A solution
concept suggests for each game a set of possible pay-offs (allocations).

The usefulness of a solution concept is not only determined by its modeling
adequacy but also by its computational complexity. In this thesis we study
the complexity of several solution concepts with respect to various classes of
cooperative games. In all games we consider, the cost or profit is computed
as the optimal value of some discrete optimization problem. More precisely,
a game is defined by a graph with an associated node and/or edge weight-
ing. The profit or cost of a coalition is determined as the value of a discrete
optimization problem on this graph.

After some preliminaries in Chapter 1, in Chapter 2 we discuss a number of
solution concepts for cooperative games, in particular the core and the nu-
cleolus. We generalize these two concepts to obtain thef -least core and the
f -nucleolus (special cases: the nucleon and the per-capita nucleolus).

Chapter 3 concentrates on minimum cost spanning tree games (MCST-games).
In an MCST-game the players are represented by nodes in a complete graph
and the cost of a coalition is equal to the weight of the corresponding mini-
mum spanning tree. MCST-games have nonempty core, and certain core al-
locations can be computed in polynomial time. However, for certain reasons
these core allocations may not be acceptable. We therefore study thef -least
core of a minimum cost spanning tree game for various priority functionsf .
By a reduction from minimum cover problems we prove that for a large class
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of priority functions computing an allocation in thef -least core of a general
MCST-game isNP-hard. As a consequence also computingf -nucleoli, such
as the nucleolus, the nucleon and the per-capita nucleolus of MCST-games, is
in generalNP-hard.

Chapter 4 deals with matching games. In a matching game the players are
represented by nodes in a graph and the profit of a coalition is equal to the
weight of the corresponding maximum matching. In particular, we study car-
dinality matching games and a generalization thereof (node matching games).
We first present a simple characterization of the least core. We then use this
description to construct a polynomial time algorithm for computing the nucle-
olus of these games. The case of general (weighted) matching games remains
open.

In Chapter 5 we study complexity aspects of sports competitions like national
football leagues and related games. In such a competition various teams play
matches against each other in pairs according to a previously determined
schedule. The central problem is the so-called elimination problem, i.e., to
determine at a given intermediate state of the competition whether a particu-
lar team still has a chance of winning the competition. Our main result states
that the new FIFA-rules (3 : 0 for a win) have complicated this problem con-
siderably. We completely characterize the complexity of this problem, and
relate it to the core complexity of a corresponding game, in which a team tries
to bribe some other teams in order to win the competition.



Samenvatting

Speltheorie modelleert en analyseert conflictsituaties, waarin twee of meer in-
dividuen (de spelers) optreden, die gelijke of verschillende belangen hebben.
In coöperatieve speltheorie kunnen spelers coalities vormen om hun winst (of
kosten) te optimaliseren.

Het is vaak redelijk om aan te nemen, dat alle spelers met elkaar gaan samen-
werken. Dan doet zich de vraag voor, hoe de gezamenlijke winst of kosten
verdeeld moeten worden. Een oplossingsconcept geeft voor elk spel een
verzameling mogelijke uitbetalingen (allocaties).

De bruikbaarheid van een oplossingsconcept wordt niet alleen bepaald door
de mate waarop het concept aansluit op de gemodelleerde situatie, maar ook
door de complexiteit van het berekenen van een allocatie volgens dat concept.

In dit proefschrift bestuderen we de complexiteit van verscheidene oplos-
singsconcepten met betrekking tot verschillende klassen van co¨operatieve spe-
len. In alle bestudeerde spelen worden de kosten (of de winst) berekend
als de optimale waarde van een zeker discreet optimaliseringsprobleem. We
definiëren een spel door middel van een graaf met gewichten op de punten
en/of lijnen. De winst of de kosten van een coalitie wordt dan bepaald als de
waarde van een discreet optimaliseringsprobleem op deze graaf.

Na een inleiding in Hoofdstuk 1 bespreken we in Hoofdstuk 2 een aantal
oplossingsconcepten voor co¨operatieve spelen. In het bijzonder besteden we
aandacht aan de nucleolus en de core. We generaliseren deze twee con-
cepten en verkrijgen op die manier def -least core en def -nucleolus (speciale
gevallen: de nucleon en de per-capita nucleolus).

Hoofdstuk 3 behandelt minimum opspannende boomspelen (MOB-spelen).
In een MOB-spel worden de spelers gerepresenteerd als punten in een com-
plete graaf en de kosten van een coalitie worden gelijkgesteld aan het gewicht
van de overeenkomstige minimum opspannende boom. MOB-spelen hebben
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een niet-lege core en bepaalde core-allocaties kunnen in polynomiale tijd
berekend worden. Echter deze core-allocaties zijn niet onder alle omstandighe-
den acceptabel. Daarom bestuderen we def -least core van een MOB-spel
voor verscheidene prioriteitsfunctiesf . We bewijzen dat het berekenen van
een allocatie in def -least core van een algemeen MOB-spelNP-moeilijk is
voor een grote klasse van prioriteitsfuncties. Uit dit resultaat volgt dat ook
het berekenen vanf -nucleoli, zoals de nucleolus, nucleon en de per-capita
nucleolus van MOB-spelen,NP-moeilijk is.

In Hoofdstuk 4 behandelen we de matching-spelen. In een matching-spel wor-
den de spelers gerepresenteerd als knopen in een graaf en de winst van een
coalitie wordt gelijkgesteld aan het gewicht van de overeenkomstige maxi-
male matching. We bestuderen in het bijzonder cardinaliteitsmatching-spelen
en een generalisatie hiervan (puntmatching-spelen). Met behulp van een een-
voudige karakterisering van de least core construeren we een effici¨ent algo-
ritme voor het berekenen van de nucleolus van deze spelen. Het algemene
geval van (gewogen) matching spelen blijft een open probleem.

In Hoofdstuk 5 gaan we in op complexiteitsaspecten van sportcompetities
zoals de nationale voetbalcompetities. In een dergelijke competitie spelen
verscheidene teams wedstrijden tegen elkaar volgens een van te voren vast-
gelegd wedstrijdschema. We bestuderen het zogenaamde eliminatieprobleem,
d.w.z., het bepalen of in een gegeven tussenstand een zeker team nog steeds
een kans maakt op het winnen van de competitie. Ons resultaat houdt in,
dat de nieuwe FIFA-regeles (3 punten voor een overwinning) dit probleem
aanzienlijk vermoeilijkt hebben. We geven een volledige karakterisering van
de complexiteit van dit probleem. Ook brengen we het in verband met de
complexiteit van het berekenen van een core-allocatie in een zogenaamd com-
petitiespel, waarin een team probeert de andere teams om te kopen om zo de
competitie te winnen.
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