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Chapter 1

Introduction

Suppose a group of persons or organizations decide to work together in order
to make a profit on some market or to do an investment (building an electricity
network, constructing a railway etc.). Then the question arises how to split the
joint profit or cost. This allocation problem can be modeled and analyzed by
(cooperative) game theory, which tries to come up with “fair” solutions (Sec-
tion 1.1). This thesis studies several well-known allocation problems, where
the cost or profit is computed as the optimal value of some discrete optimiza-
tion problem. We are especially interested in the computational complexity
of some frequently used solution concepts. Section 1.2 deals with complexity
theory and in Section 1.3 we treat some polyhedral theory. For readers not
familiar with graph theory some basic terminology is included in Section 1.4.
We end the chapter with an outline of the thesis.

1.1 Game theory

Game theory is a field of mathematical research that models and analyzes sit-
uations of conflict. In such a situation, two or more individuals (ifsyerg

with similar or different interests are taking actions or making decisions. The
foundations of game theory can be found in the paper of Von Neumann [1928]
and the book “Theory of Games and Economic Behavior” by Von Neumann
and Morgenstern [1944]. The situation of conflict first is described as a math-
ematical model (thgamg. One then uses mathematical solution methods to
come to a set of proposed pay-offs for each player. For a survey on game
theory we refer to the books of Owen [1995] and Shubik [1982].

1



2 Introduction

This thesis deals with so-called cooperative game theory, where players are
allowed to cooperate with each other in order to optimize their profits (costs).

Definition 1.1 A cooperative game in characteristic function forsngiven
by an ordered paiKN, v), whereN is a nonempty, finite set and: 2N — R,
is a function satisfying () = 0. The seN is called theplayer setand itsn el-
ements are thplayersof the game. The functionis called thecharacteristic
functionof the game. O

If a subset of players iN decide to work together, then they forne@alition.

The mapping assigns to each coalitiddC N some outcome(S), thevalue

or worth of coalition S. v(S) does not depend on the players outs&iét can

be interpreted as the maximal profit or minimal cost that the playeiS in
can achieve if they decide to form a coalition. In case @bat functionit

is common to writec instead ofv. In the rest of this thesis we speak of a
(cooperative) gaménstead of a cooperative game in characteristic function
form. In case of a profit function we may speak of profit gameand in case

of a cost functiorc we may speak of aost game

In cooperative game theory it is often assumed that the players decide to work
all together. In that case tlggand coalition Nis formed. The central problem
is to find a “fair” distribution of the total value(N) among the individual
playersi € N. Let x; denote the amount allocated to player N. A vector
x € RN is anallocationif x is efficient i.e., x(N) = v(N). (Throughout the
thesis, we use the shorthand notatio) = Z Xi.)

IS
A solution concepprescribes for each game a set of allocations. In the liter-
ature a solution concept can also assign pay-off vectors that are not efficient,
but here we will assume that all vectors prescribed by some solution concept
are allocations.

The choice for a specific solution concept depends on the notion of “fairness”
that has been specified within the decision model. Examples of solution con-
cepts that might suggest more than one allocation are the core (Gillies [1959])
and the kernel (Davis and Maschler [1965]). A solution concept that suggests
at most one allocation for each game is calleglme Well-known values are

the Shapley value (Shapley [1953]) and the nucleolus (Schmeidler [1969]).

Example 1.1 Bankruptcy gamé€O’Neill [1982])
Consider a situation where a company becomes a bankrupt and some cred-
itors bring in a number of claims. The question here is how to divide the
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available amount left by the company among the creditors. This situation can
be modeled as a cooperative game {). N is the set of creditors and the
characteristic functiom is given by

u(S) :=max{0, E — Z d} forall SC N,
iEN\S

whered; is the claim of creditor € N andE < ), d; denotes the available
amount left by the company. A valugS) can be interpreted as a lower bound
of the amount that the players in a coalitiSric N will receive if they do not
protest against the claims of players outs&leA solution concept provides
for one or more possible distributions ofN) = E among the creditors. O

1.2 Discrete optimization

In a generalliscrete optimization problenve have to optimize anbjective
functionover a certain set called th¢feasible) solution set This set can

be described by (in)equality constraints and integrality restrictions on some
or all of the variables. For a survey on discrete optimization we refer to the
books of Nemhauser and Wolsey [1999], Papadimitriou and Steiglitz [1982]
and Schrijver [1986].

An important aspect of a solution method for an optimization problem is its
computational complexity. In this section we briefly go into the main con-
cepts of complexity theory. More extended descriptions of these concepts can
be found in the books mentioned above and also in the book of Garey and
Johnson [1979].

Assume that we have a solution S#nd objective functiorf : S— R. Then
the general optimization problem is

find a feasible solutioB € Ssuch thatf (S) = maxX{ f(s) | s€ S}.
The associatedecision problenis
Given f* € R, is there a solutios € Ssuch thatf (s) > *?

So a decision problem is a question that has to be answered only by “yes” or
“no”. Clearly, every solution method that solves the optimization problem can
be used to solve the associated decision problem. Hwsceeteoptimization
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problem very often also the opposite is true: If one can solve the decision
problem efficiently, then one can solve the corresponding optimization prob-
lem efficiently. For this reason, the theory of complexity deals in the first
place with decision problems.

An instanceof an optimization problem is a set of data that is obtained when

all the parameters that define the problem are fixed.algorithmis a list

of instructions that solves every instance of a problem in a finite number of
steps. So the output of an algorithm is “yes” in case there is a solution and
“no” otherwise.

Example 1.2 EXACT 3-COVER (X3C)

Instance A finite setW with 3q elements and a collectidsh containingk > g
3-element subsets Y.

Question DoesU contain anexact covefor W, i.e., is there a subcollection
U’ C U such that every element ¥ occurs in exactly one member 0f?

Determining the size of a minimum cover that contains every elemantisf
the associated (discrete) optimization problem. O

We assume that every instance is described as a string in a binary encoding.
Thesize of a problem instands the length of the encoding, i.e., the number

of bits necessary to represent the instance. We denote the size of a rational
numbera € Q by < a >. For example, the size of a linear inequakiy< b,
wherea andb are rational numbers, is equal te-k< a > + < b >, and the
sizeofavectox c Q"isequalton+ < X3 >+ < Xo > +...+ < X, >.

Because we want to obtain a general classification of problems, we assume
that every algorithm runs on the same machine, the so-called Turing machine,
and we measure theomputation timef an algorithm by its number of per-
formed elementary operations (additions, multiplications, comparisons etc.).

The running time t&) of an algorithm is defined as the maximum (computa-
tion) time required to solve any problem instance with gizé this way we

have an absolute guarantee on the time required to solve an instance indepen-
dent of any probability distribution of the instances.

An algorithm is said to be apolynomial time algorithror efficientif its
running timet (&) is bounded by a polynomial iy i.e, ifforallé e N, t(§) =
O(&P) for some fixedp € N. (For two functionsf : N — R, andg: N — R,
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we write f (n) = O(g(n)) if there exists positive numbecsny € N such that
f(n) < cg(n) forn>ny.)

Decision problems that are solvable in polynomial time are considered to be

“easy”. The class of these problems is denotedbypP includes for exam-

ple the minimum spanning tree problem and the weighted matching problem.

Also several game theoretic problems such as computing the nucleolus of con-
vex games (Kuipers [1996]) or computing the nucleolus of assignment games
(Solymosi and Raghavan [1994]) can be solved efficiently.

An algorithm is said to be aexponential time algorithififorall £ € N, t(§) =
O(25") for some fixedp € N. The class of decision problems solvable in
exponential time is denoted iy X P. Most discrete optimization problems
belong to this class.

If a problem is inE X P\ P, then solving large instances of this problem will

be difficult. However, for a lot of problems it is not known whether they are
in EXP\P or in P. X3C is an example of such a problem: No polynomial
time algorithm for X3C is known, and until so far X3C has not been proven
to be iInEXP\P either. It is common believe that these kind of problems do
not belong toP. Moreover, some of these problems can be considered to be
“harder” than others. In order to make a more specific distinction the classes
NP C EXPandNP-completeC AP are introduced.

NP is the class of decision problems that can be solved by a so-catied
deterministic algorithm Such an algorithm consists of a guessing stage and

a checking stage. In the first stage one guesses a solution and in the second
stage the algorithm checks if this solution satisfies the problem conditions. If
the checking stage can be done in polynomial time (with respect to the size of
the instance in the guessing stage), then the problem is said to\GB.irX3C

is an example of a decision problem that is a membgv®f. A polynomial
nondeterministic algorithm for X3C would be:

guessing stage: guess a subcollectidri U (of g elements).

checking stage: 1)’ is an exact cover, then output “yes”;
otherwise return.

Obviously? C NP holds. It is widely assumed th& = NP is very un-
likely. The class\/P contains a subclass of problems that are considered to
be the hardest problems jKP. These problems are calledP-complete



6 Introduction

problems They have the following property: If one can prove that\dfp-
complete problem is a member &, then = NP holds. The technique
used here is that of polynomially transforming one problem into another. A
decision probleni], is polynomially transformabl& a decision probleril,

if there exists an algorithm that for every instamgeof IT; produces irpoly-
nomial timeexactly one instance, of I, such that the following holds:

the answer fop is “yes” if and only if the answer of, for “yes”.

This means that a polynomial time algorithfor I, can also be used to
solve an instance dil; efficiently: First polynomially transformatH, into
1, and then used.

Definition 1.2 A decision problentl is called N"P-completdf IT is in NP
and all other decision problems jxiP can be polynomially transformed to
IT. O

Note that polynomial transformability is a transitive relationlTf is polyno-
mially transformable tdl, andIT, is polynomially transformable tbl3, then
I1, is polynomially transformable tél;. Clearly’? = NP must hold if one
can prove for anyW’P-complete problem to be iR. If we want to prove that
a decision problendl is N'P-complete, then we only have to show that

(i) Tisin NP.

(i) Some decision problem already known to/f§6°-complete can be poly-
nomially transformed taI.

Our example X3C is one of the six basi\¢P-complete problems in Garey
and Johnson [1979]. The first problem proven to\b@-complete is the sat-
isfiability problem (Cook [1971]). Other well-knowk P-complete problems

are the traveling salesman problem and Hamiltonian cycle. Some examples
of N'P-complete problems in game theory are: deciding whether the core of
a minimum coloring game is empty or not (Deng, Ibaraki and Nagamochi
[1999]) and testing membership in the core of minimum cost spanning tree
games (Faigle, Kern, Fekete and Hoeltder [1997]).

Another technique that is used for proving that a problem can be solved in
polynomial time in case another problem can is polynomial reduction: Sup-
pose we have two probleni$; and I, not necessarily decision problems.
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A polynomial reductiorfrom IT; to I, is an algorithmA, for IT, that uses

an algorithmA, for I, as a subroutine and that would be a polynomial time
algorithm forIT; if A, were a polynomial time algorithm fdf,. This is a
more general technique than polynomial transformation, which can be seen
as a special case of reduction in which the subroutipé used only once.

Definition 1.3 An optimization problendT is called NV'P-hard if there exists
an N P-complete decision problem that can be polynomially reducdd.to

Note that this definition includes all optimization problems for which the as-
sociated decision problem i§P-complete. In particular, (the optimization
version of) X3C isNP-hard. Polynomially reducibility is a transitive rela-
tion. Therefore, in order to provk P-hardness for some problem it suffices

to show that a knowr\P-hard problem can be reduced to it. SokéP-
hardness results in game theory are computing the nucleolus of minimum cost
spanning tree games ( Faigle, Kern and Kuipers [1998a]) and computing the
Shapley value in weighted majority games (Deng and Papadimitriou [1994]).

1.3 Polyhedral theory

The theory we discuss in this section is derived from the the books of Schrijver
[1986] and Gotschel, Lowdsz and Schrijver [1993].

Consider a set of pointX = {x!,...,x} C R" and a vectoi. € R¥. The
linear combinationx = Y~ , X is an affine combinationf Y\, A; = 1,
andx is called a convex combinatioif besidesy 4 =1, % > 0. Xis

called linearly (affinely) independerit no pointx' € X can be written as a
linear (affine) combination of the other pointsXn

A subsetS C R" is convexf for every finite number of pointg®, ... ,x<€ S
any convex combination of these points is a membes. of

A nonempty se€C C R"is called aconvex cond Ax+ uy € Cforallx,ye C
and for all real numbers, u > 0.

A convex setP C R" is apolyhedronf there exists amm x n matrix A and a
vectorb € R™ such that

P=P(A b)={xeR"| Ax< b}.

We call Ax < b asystem of linear inequalities
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A polyhedronP C R" is boundedf there exist vectors, u € R" such that
| < x<uforall x € P. Abounded polyhedron is calledolytope

For our purposes, only rational polyhedra are of interest. A polyhedron is
rationalif it is the solution set of a systerix < b of linear inequalities, where

A andb are rational. A rational polyhedroR C R" is said to havefacet
complexity at mosp, if there exists a systemAx < b of linear inequalities
with rational coefficients that haB as its solution set and such that the size
of each inequality of the system is at mgst-rom now on we will implicitly
assume a polyhedron to be rational.

A point x € P is called avertexof P if x cannot be written as a convex
combination of other points if?. The following theorem presents a tight
upper bound on the size of a vertex.

Theorem 1.1 Let PC R" be a polyhedron with facet complexity at mest
Then each vertex has size polynomially bounde® by’¢). O

The dimensiorof a polyhedronP C R" is equal to the maximum number of
affinely independent points iR minus 1. Animplicit equalityof the system
Ax< bis aninequality)"T_, &;x; < b; of that system such thaf|_, a;x; =

b; for all vectorsx € P(A, b). For Ax < b we denote the (sub)system of
implicit equalities byA=x < b=. Let rank(®A) denote thaank of a matrix

i.e., the maximum number of linearly independent row vectors. We have the
following standard result.

Theorem 1.2 The dimension of a polyhedron(R, b) C R" is equal to n—
rank(A<). O

A subsetH C R" is called ahyperplanef there exists a vectdn € R" and a
numbera € R such that

H={xeR"|h"x=a}.

A separating hyperplanfor a convex seGand vectoix ¢ Sis a hyperplane
given by a vectoh € R" and a numbes € R suchthah™x < o andh’y > «
holds for ally € S.

The separation problenfor a polyhedronP C R" is, given a vectox € R",

to decide whethex € P or not, and, ifx ¢ P, to find a separating hyperplane
for P andx. A separation algorithrmior a polyhedronP is an algorithm that
solves the separation problem fér



1.3 Polyhedral theory 9

Linear programmindLP) deals with maximizing or minimizing a linear func-
tion over a polyhedron. IP C R" is a polyhedron and € R", then we call
the optimization problem

(LP) max{d'x|xe P}

alinear program A vectorx € P is called a feasible solutiorof the linear
program and* is called anoptimal solutiorif x* is feasible andl"x* > d"x
for all feasible solutionx. If for all x € P a solutionx* € P exists with
d"x* > d"x, then LP) is unboundedIf (L P) has no optimal solution then it
is either infeasible or unbounded.

Khachiyan [1979] showed that LP can be solved in polynomial time by means
of the ellipsoid method. @Gtschel, Loasz and Schrijver [1981] refined this
method in such a way that the computational complexity of optimizing a linear
function over a convex seb depends on the complexity of the separation
problem forS. If the convex set is a polyhedron, this can be stated as follows
(see also Gutschel, Loasz and Schrijver [1993)):

Theorem 1.3 There exists an algorithm ELL and a polynomial p in two vari-
ables n andy such that the following holds:

For each polyhedron Z R" with facet complexity at mosgtfor which there
exists a separation algorithm SE FELL solves the linear program

max{d"x | x € P}

in time bounded by a polynomial in @, < d >, and T, where T is the maxi-
mum time required by SE P on input vectors x of sige p). O

Here, “solving a linear program” not only means finding an optimal solution,
but it also means detecting the cases in which the linear program is infeasible
or unbounded.

Now assume that for a polyhedrdd C R" with facet complexity at most
@ a separation algorithr E Pexists that solves on inputsthe separation
problem for P in time bounded by a polynomial in, ¢ and < x >. Then
from Theorem 1.3 it follows immediately th&L L solves the linear program
max{d"x | x € P} in time bounded by a polynomial im ¢, and< d >.

Remark 1.1 For any polyhedrorP, by definition, a linear systemAx < b
exists such thaP = P(A, b). In practice this description may be unknown
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or consists of too many inequalities. Theorem 1.3 shows that this is not a
problem as long as the facet complexityfis low and an efficient separation
algorithm for P is known. Moreover, in that case the running timekif L

only depends on the size but not on the number of inequalities defihing

1.4 Graph theory

The games we study can be represented by graphs. We associate a cooper-
ative game K, v) with some graplG in the following way: The player set

N is the node set ot and the value of a coalition(S) is determined as the

value of a discrete optimization problem @& (e.g., the weight of a maxi-

mum matching). In this section we include some terminology for readers not
familiar with graph theory. For more on graph theory we refer to the book of
Bondy and Murty [1976].

A graph Gis an ordered paitV, E), whereV is a nonempty, finite set called
thenode sebndE is a set of (unordered) pairg {) with i, j € V called the
edge setlf another graptG’ has been defined we writg' (V) andG'(E) to
make a distinction.

The elements oY are callechodesand the elements d& are callecedges If
e= (i, j) € Ewe say that nodeand nodg are adjacent In such a caseand

| are called thend pointsof e or incidentwith e. Furthermore, we say that
is incidentwith i and j, and a subsdE’ C E of edges is said tooverthe set
of nodes incident with some edgeliti. A node j for which there is an edge
(i, j) € Eis aneighborof i. The number of neighbors of a nodés called
thedegreeof i and denoted by (i) and a node with no neighbors is called an
isolated nodeTwo edges are calleaddjacentf they have a common incident
node.

A multigraphis a graph with possibly more than one edge between two nodes.

We speak of aweightedgraph if aweight functionw : E — R is defined

on the edge sefE of a graphG. The numberw(e) is theweightof an edge

e € E. (It can usually be interpreted as a certain profit or cost.) Wéight of

a subset EC E is equal to the sum of the weights of its edges and denoted
by w(E).

A complete grapls a graph with an edge between every pair of nodes. The
complete graph on nodes is denoted bi,.
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A graphG is a bipartite graphwith node classespMandV; if V =V, U Vs,
V; NV, = () and each edge joins a node\gfto a node ofvs,.

A subgraphof G is a graphG’' = (V/, E') with V' C VandE' C E. G

is called the induced subgraph by’, denoted byG|y/, if E' = {(i, j) €
E|i,jeV} If VVCV then we letG\V’ denote the graph obtained by
removingV’ (and the edges incident with nodes\f. If E' C E thenG\E’
denotes the graph obtained by removing the edgé&2.ikVe say that a graph
G containsa graphG’ if G hasG’ as subgraph.

A pathfromi to j is a graphP = (V, E) with a node set that can be or-
dered agvy, ... , v, With vg =i andv, = j such thate = {(vg, v1) | K=
0,...,n—1}. The nodes andj are called thend pointsof the path anadh

is thelengthof the path. We also writ® = vov; . . . v,

A cycleis a graph for which the node set can be orderedyas. . , v, such
thatE = {(vk, vkr1) | k=0,...,n—1} U{(vn, vo)}. We denote a cycle on
n nodes byC,.

A graphG is called connectedf G contains a path fromto j for each two
nodesi, j € V. A component Gof G is a maximal connected subgraph of
G, i.e., if G is a connected subgraph 6fand G’ is a subgraph o6, then

G = G Thesize of a componeid its number of nodes. We denote the size
of a componenG’ by |G'|. A component is calledevenor oddif it has an
even respectively odd number of nodes.

A treeis a connected graphthat does not contain any cycle. Anade V is
called aleafof a treeT = (V, E), if i has exactly one neighbor. #restis a
graph (not necessarily connected) that does not contain any cysfzaming
treeof G= (V, E) isatree(V’, E') with V' =

A matchingin a graphG = (V, E) is a subseM of E such that no two edges
in M have a common end point. A matchiiymatchesa subset/; into V,,
if each edge irM is incident with a node ifv; and a node in/,.

A node covein a graphG = (V, E) is a subseV’ of V such that every edge
in E is incident with a node ifv’.

If the pairs(i, j) in the edge set of a graph are ordered, then we speak of a
directed graphor digraphand we call such an ordered pédir j) anarc. In

this case the edge set is usually denoted\bif a = (i, j) is an arc, then node

i is called thetail t(a) of aand | is called thehead Ka) of a. The arcais

an outcoming ar®f nodei and is anincoming arcof nodej. Theoutdegree
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of a nodel, denoted bys* (i), is the number of outcoming arcs ipfand the
indegrees— (i) is the number of incoming arcs of

A network (G, |, u) is a directed graplc = (V, A) with two distinguished
nodess andt and two function$ : A— R, andu: A— R, such that(a) <
u(a) for all a € A. sis called thesourceandt is called thesink | is thelower
capacity functiorandu is called theupper capacity functionl (a) andu(a)
are respectively thimwer andupper capacityf arca € A.

A flowfrom stot in a network(G, I, u) is a functionf : A — R such that for

alli € V\{s, t}
Z f(a) = Z f(a).

t(a)=i h(a)=i

A flow f is called feasibleif forall ac A [(a) < f(a) < u(a). The fol-
lowing standard result can be deduced from the Hoffman-Kruskal theorem
(Hoffman and Kruskal [1956]).

Theorem 1.4 Let (G, |, u) be a network with integral capacities | and u.
Then there exists an integral feasible flow €@, I, u), if there exists a feasi-
ble flow for(G, I, u). O

1.5 Outline of the thesis

The usefulness of a solution concept is not only determined by its modeling
adequacy but also by its computational complexity. In this thesis we study
the complexity of several solution concepts with respect to various classes of
cooperative games.

In Chapter 2 we discuss a number of solution concepts for cooperative games,
in particular the core and the nucleolus. Furthermore, we describe some least
core concepts and variants of the nucleolus like the nucleon and the per-capita
nucleolus.

Chapter 3 concentrates on minimum cost spanning tree games. Various least
core concepts, including the classical least core, are analyzed. By a reduction
from minimum cover problems we prove that computing an element in these
least cores isVP-hard for minimum cost spanning tree games. As a conse-
guence, computing the nucleolus, the nucleon and the per-capita nucleolus of
minimum cost spanning tree games is alé@-hard.
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Chapter 4 deals with matching games. In particular, we study cardinality
games and a generalization thereof (hode matching games). We show that the
nucleolus and hence elements in the least core of such games can be computed
efficiently. The case of general (weighted) matching games remains open.

In Chapter 5 we study complexity aspects of sports competitions like national
football leagues and related games. The central problem is the so-@laited
ination problemi.e., to determine at a given intermediate state of the compe-
tition whether a particular team still has a chance of winning the competition.
Our main result states that the new FIFA-rules (3 : 0 for a win) have compli-
cated this problem considerably. We completely characterize the complexity
of this problem and relate it to the core complexity of a corresponding game.






Chapter 2

Solution concepts for cooperative
games

Recall that a solution concefit prescribes a s& (N, v) C RN of allocations

for any cooperative gameN( v). In Section 2.1 we treat some elementary
properties that a solution concept might have. The choice for a particular
solution concept depends on the “fairness” of its properties with respect to
the specific game one considers. We also make some general statements on
the computational complexity of solution concepts in this section. Section 2.2
deals with the core and the least core of a game. The nucleolus is discussed
in Section 2.3. In Section 2.4 we generalize the concepts of the previous two
sections resulting in thd-least core and thé-nucleolus (special cases: the
nucleon and the per-capita nucleolus). We end the chapter with a description
of the Shapley value of a game (Section 2.5).

2.1 Solution concepts: properties and complexity

Let (N, v) be a cooperative game. An allocatiene RN is said to be an
imputationor individually rationalif x; > v(i) for alli € N. An imputation
allocates to each playerc N at least the amount thatcan receive on his
own. Note that this definition is related to a profit game. In case of a cost
game one has to reverse the inequalities( c(i)). The set of imputations

for a game(N, v) is denoted byl (N, v).
I(N,v) = {x€RY | x(N) = v(N),x >v() foralli € N}.

15
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Obviously, I (N, v) is nonempty if and only iy >, v(i) < v(N). The set of
allocations opre-imputationgor a game N, v) is denoted by “(N, v).

I*(N, v) = {x € RN | x(N) = v(N)}.

In the rest of this chapter we mainly consider profit games, but the same the-
ory can be applied to cost games. In that case some definitions have to be
adjusted (more or less trivially by reversing some inequalities). In the lit-
erature sometimes the notions anti-core and anti-nucleolus are used, if one
considers a cost game. Here we will still speak of the core and nucleolus of a
cost game.

Below we summarize a number of elementary properties or axioms for a solu-
tion conceptd defined on a clasg of cooperative games (see, e.g., Driessen
[1991]). We use the following notations: X is a subset oRN andi € R,

then the set X is equal to{Ax | x € X}. If Y is also a subset @&, then the
setX + Y denotes the sum of andY, i.e, X+ Y ={x+y|xe X,ye Y}.

. Individual rationality (Ind)
A solution conceptb is called individually rational if for all games
(N,v) e Gand allx e ®(N, v) xis individually rational.

. Nonemptiness (Non)
A solution conceptd has this property, if for all game$( v) € G

®(N, v) # 0.

. Dummy player property (Dum)
A playeri € N is called adummyin a game N, v) if v(S) — v(S\i) =
v(i) for all SC N with i € S. A solution conceptd has the dummy
player property if for all gameéN, v) € G, all dummy players € N,
and allx € ®(N, v)

Xi = U(l)

According to a solution concept that satisfidBam a dummy player
receives exactly the amount that he contributes to every coalition.

. Symmetry (Sym)
Let # : N — N be a permutation. The gam&l(v™) is given by
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v ((S)) = v(S) for all SC N. For any vectoix € RN let the vec-
tor x™ be given byxg(i) = x; for alli € N. For any setX C RN, X~
defines the set

{y e RN | y=x"for somex € X}.

A solution conceptb is symmetric if for all gamesN, v) € G and all
permutationsr : N — N

®(N, v") = d(N, v)".

A symmetric solution concept is not influenced by renumbering of the
player set.

. Invariance (Inv)
Let (N, v) € G. Letd € Randac RN. The gameN, Av + a) is given
by v+ a)(S) = rv(S) +a(S) for all SC N. A solution concep® is
called invariant if for all gamegN, v) € G, all A € R, and alla € RN

®(N, Av+a) = AD(N, v) + {a}.

. Additivity (Add)
Let (N, v), (N, w) € G. The gameN, v+ w) is given by(v +w)(S) =
v(S) + w(S) for all SC N. A solution conceptb is additive if for all
gamesN,v) e Gand all(N, w) € G

O(N, v+ w) = DP(N, v) + P(N, w).

A singleton is a set that contains exactly one element. In the previous chapter
we have stated that a solution concept that prescribes at most one allocation
for agame(N, v) € G is called a value. If a valu®&(N, v) of a game N, v)

is nonempty, then we write, as a shorthand notatN, v) not only to
indicate the singleton but also to indicate the allocation itself.

This thesis in particular studies classes of games, where each gamg (
can be presented “implicitly” in terms of(aeighted) discrete structufeom
which we can derive the coalition values. More precisal, «) will be de-
fined by a pair G, w), whereG is a graph with node s&f = N, andw is a
weight function defined on the nodes and/or edge&.ofGiven a coalition
SC V we can compute(S) by solving a (mostly easy) discrete optimization
problem corresponding wit8 (cf. also Bilbao [2000]).
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Example 2.1 Let G = (N, E) be a graph with node sé& and edge seE.
Letw : E — R, be aweight function defined da. For SC N we denote the
set of edges joining nodes 8y E(S). We define a cooperative gami,(v)
with characteristic functiom given by

v(S) = Z w(e) forall SC N.

ecE(S)

0

We assume that thevalues we derive from the underlying discrete structure
(G, w) have size polynomially bounded in the size of the structure. Hence
to any gamel{, v) in our class we may associatess&ze< N, v >, which is
polynomially bounded in the size of the underlying structure and at the same
time is an upper bound for the size of amyaluev(S).

Example 2.2 In Example 2.1 we may define N, v >=|N|?2 < w >, where
<w>=max{< w(e) > |ec E}. 0

Now consider an algorithmi that on input {, v) (obtained from a discrete
structure (5, w)) computes one or more allocations according to a solution
concept®. ThenA is a polynomial time algorithm if its running time is
polynomially bounded inc N, v >.

2.2 The core and least core

Thecoreof a game is the most fundamental solution concept within coopera-
tive game theory. The idea of the core essentially goes back to Von Neumann
and Morgenstern [1944] and Ransmeier [1942]. The core was first introduced
and named in Gillies [1959].

Definition 2.1 Thecoreof a game N, v) is the following set of allocations:
corgN, v) := {x € R" | x(N) = v(N), x(S) > v(S) for all ) # S# N}.
O

A vectorx € core(N, v) is said to be aore allocation A core allocatiornx
guarantees each coaliti®C N to be satisfied in the sense that it gets at least
what it could gain on its own. As a solution concept the core satibiis
SymandInv. Note that the core allocations form a polyhedroiiRih
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A game (N, v) is called superadditivef
v(S)+v(T) <v(SUT) forallSTCN,SNT=1.

In a superadditive game it is very likely that the grand coalitddmwill be
formed.

The following example shows that even for a superadditive three-person game
the core can be empty. (Actually this is an example of a matching game on
K3 with unit edge weights, cf. Chapter 4.)

Example 2.3 Consider the player séd = {1,2,3} and letv : 2¥ — R, be
given byv(1) = v(2) = v(3) =0 andv(1,2) = v(1,3) = v(2,3) = v(N) =
1. If x € R3 were in the core, them; + X, > 1 andx; > 0. Together with
X(N) = 1, this impliesxz = 0. In the same way we can deduge= x, = 0,
a contradiction. Hence comd( v) is empty. O

Because many interesting games, such as matching games, may have an empty
core, theadditivee-core of a game N, v) has been introduced (Shapley and
Shubik [1966]). For a givern € R, the additives-core of (N, v) is the set of
allocations

{xe RN | x(N) = v(N), x(S) > v(S) +eforall ) # S# N}.

Obviously there exists aa € R such that the additive-core of (N, v) is
nonempty. If we maximize under the restriction that-core of (N, v) is
nonempty, then we obtain tHeast coreof a game N, v) (Maschler, Peleg
and Shapley [1979]).

Definition 2.2 Theleast coreof a game N, v), denoted by leastcori( v),
consists of all optimal solutionsc RN of the linear program

(LC) max €
st. xX(S) > v(S)+e (S#0,N)
X(N) = v(N).

O

The least core of a gaméN( v) tries to satisfy all coalition® = S# N as
much as possible. Adding all inequalitigs> v(i) + ¢ and usingx(N) =
v(N) yields the upper bound

‘< v(N) =D iy v(i)_
N INJ
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Hence (C) has an optimal value* . Obviouslye* > 0 if and only if the
core of (N, v) is nonempty. Furthermore, if cofd( v) is nonempty then
leastcorel, v) C core(N, v).

The excessf a coalition) # S# N in a game N, v) with respect to an
allocationx € RN is defined as

e(S x) :=x(S) —v(S).

The excesg(S, X) can be seen as a measure of satisfactioBwith respect
to the allocatiorx. If e(S, x) < e(T, xX) then coalitionSwill be less satisfied
with allocationx than coalitionT.

Least core allocations are just those allocations that maximize the minimal
exces®nin(X) := min{e(S, x) | ) # S# N}:

leastcoréN, v) = {x € RN | x(N) = v(N), &nin(X) = €*}.

2.3 The nucleolus

If the least core is not yet a single point, one might try to find “the best”
allocation in the least core by further pursuing the idea of maximizing mini-
mum excess: After satisfying the coalitions with the smallest excess as much
as possible, one tries to satisfy coalitions with the second smallest excess as
much as possible and so on.

Given an allocatiorx € RN, we define theexcess vectof(x) € R?"~2 by
ordering the 2 — 2 excess values(S, x) in a non-decreasing sequence. A
vectorx € R™is said to belexicographically smaller than or equal tosyR™,
denoted by <y, if X =y or there exists a numberd j < nsuch thak; =,

if i < jandXji1 < Yjta.

Definition 2.3 Thenucleolusof a game N, v) is the set of imputation§x €
[(N,v) |6(y) <6(x)forally e I (N, v)}. O

Note that the nucleolus is the set of allocations RN that lexicographically
maximize 6(x) over I (N, v). If the set of imputations is empty, then the
nucleolus of [, v) is the empty set. If we lexicographically maximize over
the whole set of allocations*(N, v), we obtain theprenucleolusof (N, v).

Both nucleolus and prenucleolus are defined as set valued solution concepts.
However Schmeidler [1969] proved the following:
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Theorem 2.1 Let SC RN be a nonempty convex set. Then the {set
S| 6(y) 2 6(x) for all y € S} consists of exactly one point. O

From this result it follows that the nucleolus prescribes a unique allocation,
if 1(N, v) is nonempty. In that case we denote the nucleolus\ofv] by

n(N, v). By the same result also the prenucleolus, which exists for all games
(N, v), is a singleton.

As a solution concept the nucleolus satisfied, Dum SymandInv. The
prenucleolus only satisfies the last three properties.

It is immediately clear that computing the nucleolus by explicit lexicographic
optimization of the excess vector is not efficient: In general there are expo-
nentially (in| N|) many different excess values, whereas an efficient procedure
should be polynomial inN|. The standard procedure for computing the nu-
cleolus proceeds by solving up tdl| linear programs (cf. Maschler, Peleg
and Shapley [1979]). To present it we introduce the following notation: For a
polyhedronP C RN let

FixP:={SC N |x(S) =y(S forallx,y € P}

denote the set of coalitionBxedby P. We assume thdt(N, v) is nonempty
and letF, := {0, N}. First consider the linear program

(P1) max €
st. X(S) > v(S+e (S¢F)

X € I(N,v)

with optimum values; € R. We let Py(¢) denote the set of ait € RN such
that (x, €) satisfies the constraints olP{). So core(\, v)= P;(0). If ¢; > 0,
then leastcord{, v) = Py(€7).

Now, assume we have determinBge;). We then proceed to maximize the
minimal excess on those coalitions that are not already fixed, i.e., we solve

(P) max e
s.t. X € Piu(er)
X(S) > v(S)+e€ (S¢ FixPyi(ey)).

Clearly (P,) is bounded and feasible. Hencedet> ¢; be the optimum value
of (P,). Extending our previous notation in the obvious way, weRgf)
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denote the set of ak € RN satisfying the constraints of%) for e € R. Now
proceed to

(P;) max e
s.t. X e Pu(ep)
X(S) > v(S)+e (5S¢ FixPi(ep))

etc. until

(P) max €
s.t. X < Pr—l(erfl)
XS > v(S+e (S¢FixP_1(e-1))

defines a unique solutioxr € RN, which is equal ta)(N, v), the nucleolus
of the game. We have obtained this allocation after computing

€1 <€ <...<€

and Pl(El) C P2(€2) Cc...C Pr(Er) = T)(N, V).

The same procedure can be applied to compute the prenucleolus, for which
we only have to replace the constraie | (N, v) by x € 1"(N, v) in the

linear program P,). If core(N, v) is nonempty ther; > 0 and in that case

the nucleolus and the prenucleolus coincide.

We see that in each iteration (implicit) equality constraints are added that are
independent of previous equality constraints. This implies that the feasible
regions of the above sequence of LP’s decrease in dimension. Hence we con-
clude thatr < |N|. So we compute at mo&N| different excess values explic-

itly. Note, however, that in each step we have to identify theFset, (¢;).
Furthermore, the number of constraints in eakB}) (emains exponential in

INJ.

The above “Linear Programming approach” to the nucleolus is also interest-
ing from a structural point of view, as it implies a nice bound on the size
< n(N, v) > of the nucleolus.

Theorem 2.2 The nucleolus of a game (N) has size bounded polynomially
in< N, v>.

Proof: Let 7y C ... C F_1 C 2 denote the increasing sequence of fixed sets
in(Py),...,(R),i.e,Fy={0, N} and

Fi = FixP(¢) (i=1,...,r=1).
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Let the polyhedrorP* C R"*N be defined by

X(N) = v(N)

x > () (ieN)
X(S) > v(S)+é (S¢Fo)
XS > v(S+é (S¢F)
XS > w(S)+E& (S¢F o).

Then it is clear that

max{é, | (€, X) € P*} yieldsé; = €3,

max{é, | (€, X) € P*, €&, = ¢} yieldsé, = ¢, etc. until

max{é, | (¢,X) € P*, é,=¢€1,...,&_1=¢_1} has only one solution namely

(Gl, L] 6]” X*)9

wherex* is the nucleolus ofl, v) andey, ... , ¢ are the optimum values of
(Pl)’ ey (F)I‘)

From the above it is straightforward to see the, ... , ¢, X*) cannot be
written as a convex combination of other pointdh Hence(ey, ... , €, X*)

is a vertex ofP*. As such its size is polynomial in the dimensioa |[N| =
O(|N]) and the facet complexity (cf. Theorem 1.1). The latter is polynomially
bounded by< N, v >. O

Remark 2.1 From the proof of Theorem 2.2 it is also clear that the size of
the parameters (i =1,...,r)is polynomially bounded irc N,v >. O

So if we choose to compute the nucleolus of a gaiev] by using this
algorithmic procedure, then the only difficulties are

() identifying the setd=ix P,(¢;) in each iteration step;
(i) the exponential number of constraints in ea&) (

In general these difficulties turn out to be hard. No polynomial time al-
gorithms are known for computing the nucleolus in general. For instance,
computing the nucleolus of minimum cost spanning tree gama&Hishard
(Faigle, Kern and Kuipers [1998a]). Granot, Granot and Zhu [1998] study the
complexity of the nucleolus in general. Several (not efficient) algorithms for
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computing the nucleolus in general have been developed (see, e.g., Potters,
Reijnierse and Ansing [1996]). Positive results are known for some particular
classes of games. For instance, there exist efficient algorithms for comput-
ing the nucleolus of standard tree games (Megiddo [1978], Granot, Maschler,
Owen and Zhu [1996]), the nucleolus of convex games (Kuipers [1996]) and
the nucleolus of assignment games(Solymosi and Raghavan [1994]). Further-
more, in Chapter 4 we will show that for a subclass of matching games we can
describe the polyhedrd) by means of a polynomial number of inequalities.
Also for this class of games the nucleolus can be computed efficiently.

2.4 The f-least core andf-nucleolus

In the literature, core relaxations different from the additv@re have been
studied. Faigle and Kern [1993] propose thmultiplicativee-core of a game
(N, v). Here, thes-correction is directly related to the value v(S). For a given
€ € R, the multiplicativec-core of (N, v) is the set of allocations

{x € RN | x(N) = v(N), x(S) > v(S) + ev(S) for all ) # S# N}.

Also for the multiplicatives-core of aprofit game(N, v) there exists am € R
such that the multiplicative-core is nonempty. For a cost game this does
not need to be true. Consider for example a two-person gé&me) (with

N = {1, 2} andc given byc(1) = c(2) = 0 andc(N) = 1. For alle € R the
multiplicative e-core is the sefx € R? | x; + X, = 1, X1, X2 < 0}, which is
empty.

The multiplicative least corés defined in the same way as the classical least
core, and we generalize as follows:

Definition 2.4 Let f : 2N — R,. Then thef-least coreof a game N, v) is
the set of allocation vectors that are optimal solutions of the linear program

(f-LC) max e
st. xX(S) > v(S+ef(S (S#0,N)
X(N) = v(N).
Denote this set byf-leastcorel, v).

If (f-LC) is unbounded, therf-leastcore N, v) is defined to be equal to
core(N, v). If (f-LC) is infeasible, thenf-leastcore K, v) is the empty set.
O
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Obviously, the largeif (S) is for some coalitiorS C N, the more decisiv&

is for determining the optimum value of {LC). We therefore call a func-
tion f as above griority function Note thatf = 1 corresponds with the
classical least core anf S) = v(S) for all SC N corresponds with the mul-
tiplicative least core. In case of a cost game a priority functiemclosely re-
lated to the concept oftaxation function Shapley and Shubik [1966] define
f(S) = |9 forall SC N and Tijs and Driessen [1986] propose thast-tax
core, where f(S) = v(S) — ) ;.gv(i) forall SC N. Note that for azero-
normalizedgame(, v) (a game where (i) = O for all playersi € N) the
least-tax core ofl{, v) is equivalent to the multiplicative least core ®f,(v).

Motivated by the examples above (and also for computational reasons) we
mainly restrict our attention to priority functionisthat satisfy the following
conditions:

(f1) f depends only on the size and the value of a coalition, f.¢s,0f the
type f :Nx R — R,. For() # S N we setf(S) = ,v(9)).

(f2) Forall) # S# N, f(S) can be computed in time bounded by a poly-
nomialin< N, v >.

Because the empty coalition and the grand coalitidmave already fixed pay-
offs, we can restrict a priority functiofi : 2N — R, to the set 2\ {), N}.

The next example shows that differefleast cores can prescribe different
allocations. We compute the additive and multiplicative least core for a simple
class of games.

Example 2.4 Suppose we have a situation where a number of persons want
to make a large profit*. They can only obtain this profit if they all make a
joint investment, where every persbmvests an amount(i). We model this
situation by annvestment gam@, v), wherev is given byv(S) 1=} ", _qv(i)

forall SC N andv(N) =v* > ), v(i). Itis straightforward to check that

the additive least core yields the unique allocattanRN given by

vt — ZieNv(i)
N ’

while the multiplicative least core prescribes the unique allocatienRN
given by

Xi=v()+

)
A SN
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If players are payed according £pthen each player receives his own invest-
ment plus an equal share of the amount that is left. If allocation veci®r
used, then they receive a pay-off relative to their investments. The last rule
seems to be more appropriate. In that case, for example, a playlrwith
investmenw (i) = 0 is not paid anything. O

If f(S) > 0 for some coalitior5 C N, then we have an upper bound

v(N) —v(S) — v(N\S)
=719+ F(N\S

Hence (f-LC) is unbounded if and only iff = 0 on 2%\ {(), N}. Now as-
sume (f-LC) to be feasible and bounded and égtbe the optimal value of
(f-LC). Thenet > 0 if and only if core(\, v) is nonempty and the following
proposition is obvious.

Proposition 2.1 If core(N, v) # 0, then
() £ f-leastcorgN, v) C core(N,v) forall f:2V —R,.
0

We define thef -exces®f a nonempty coalitio’s C N with respect to a vector
x € RN as the number

% if £(S) >0
e'(Sx) = { o if £(S) =0andx(S) > v(S)
—00 otherwise

Let er;m(x) :=min{e’(S,x) | § # S# N}. If (f-LC) has an optimal value
€%, then f-leastcorel|, v) can also be formulated as
f-leastcoréN, v) = {x € RN | x(N) = v(N), &' . (x) = €% }.
In general, computing an allocation in tHeleast core of a game\, v) im-
plies solving an exponential number of inequalities. However we can obtain
the following result (cf. also Faigle, Kern and Kuipers [1998b]).

Theorem 2.3 Let (N, v) be a cooperative game, and: N — R, be a pri-
ority function. Suppose that, for an allocatiorexRN, a coalition() # S# N
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with ef (S, x) = e,;in(x) can be computed in time bounded by a polynomial
in < N,v > and < x >. Then an allocation in f-leastcore(N) can be
computed efficiently.

Proof: Let P; C RN*! denote the polyhedron of feasible solutiorse) for
(f-LC). We solve the separation problem f@r as follows: Given(X, €), we
first check whetheR(N) = v(N) is satisfied. Next we compute a coalition
0 +# S+ Nsuchthae' (S, %) =e' (%). If el (%) > &, then(x, ) is feasible.

If this is not true, our separating hyperplane is
{(x,€) € RN x(S) — f(S)e = v(9)}.
By our assumption these computations can be done in time polynomially

bounded in< N, v > and < X >. FurthermoreP; has facet complexity at
most< N, v > + < f >, where

< f>=max{< f(S) > |0 #S# N}.

By (f2), < f > is polynomially bounded ir< N, v >. Then the result follows
directly from Theorem 1.3. O

If the condition in Theorem 2.3 is satisfied, then we can compute the optimal
value e} of (f-LC) in polynomial time. Ife} is positive, then the core is
nonempty. Otherwise the gambl,(v) has an empty core. So, as a direct
consequence of Theorem 2.3, we can efficiently check whetherMoog(s
empty or not.

Example 2.5 (see also Faigle, Kern and Kuipers [1998b])cAnvex games
a cost gamel, c) whose characteristic functianis submodulayi.e.,

c(SUT)+c(SNT)<c(S) +c¢(T) forall ST C N.

Let f : 2N — R, be a priority function. In case of a cost game théeast
core is defined as the set of optimal solutions of the linear program
(f-LC) max ¢
st. xX(S < c(9 —¢€f(S) (S#£0,N)
X(N) = c(N),
and thef-excess of a nonempty coalitighc N for a given vectox € RN is
given by
c(S) —x(S .
00 if £(S)=0andx(S) <c(S)
—00 otherwise

e’ (S, x)
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For f = 1 itis straightforward to check that the excess function
e.,x) : 2\ {0, N} - R

is also submodular. From a standard result in discrete optimization on min-
imizing a submodular function (cf. @tSchel, Lo&sz and Schrijver [1993])

it follows that computing a coalitiors such thate(S, x) = eyin(X) can be
done in polynomial time. Hence, by Theorem 2.3 we conclude that we can
efficiently compute an element in the least core of a convex gaime)( O

Analogously to the introduction of thé-least core for a given priority func-
tion f : 2¥ — R, we can extend the notion of the classical nucleolus to the
f-nucleolus. Order the™2— 2 f-excess values' (S, x) in a non-decreasing
sequence resulting in thé-excess vecta# (x). The f-nucleolusof (N, v)

is then defined to be the set of all imputations RN that lexicographically
maximize the excess vectéf(x).

Definition 2.5 The f-nucleolusof a game [, v) is the set of imputations
{xe I(N,v) |6 (y) <0"(x)forally € I(N, v)}. O

Note that thef-nucleolus forf = 1 corresponds with the (classical) nucle-
olus. In the literature the following examples have already been introduced:
If fis given by f(S) = v(S) for all Sc N, then thef-nucleolus is called

the nucleon(Faigle, Kern, Fekete and Hoch#léer [1998]). If f is given by

f(S) = |9 for all SC N, then thef-nucleolus is called thper-capita nu-
cleolus(see, e.g., Young, Okada and Hashimoto [1982])f tnly depends

on the size of a coalition, i.ef(S) = f(T) if |§ = |T| for all coalitions

S, T C N, then thef-nucleolus coincides with thé-nucleolus of Wallmeier
[1983].

Contrary to the nucleolus, thie-nucleolus of a game\, v) for some priority
function f £ 1 does not necessarily consist of a single element. The following
example illustrates this for the nucleon.

Example 2.6 Let (N, v) be a two-person game, wheke= {1, 2} andv is
given byv(N) = 1 andv(1) = v(2) = 0. Then the nucleon afN, v) is the
set

{XER?| X+ X2 =1, X1, X2 > O}
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The algorithmic procedure for the nucleolus can also be applied to the general
f-nucleolus. We assuniéN, v) to be nonempty and lek, := {0, N}. For a
given priority functionf : 2N — R, we consider the linear program

(P)) max e
st. X(S) > v(S+€f(S (S¢ Fy)
X € I(N,v).

If (Plf) has an empty feasible solution set, then thaucleolus of {, v)
is empty. Otherwise IePlf (¢) denote the set of alt € RN such that(x, €)
satisfies the constraints oP{). If (P) is unbounded, therf(S) = 0 and
the f-nucleolus of N, v) is equal to coréN, v). Otherwise Ietslf € R denote
the optimum value ofPlf). Note that corell, v)= Plf (0). Furthermore, if
core(N, v) is nonempty, them, > 0, f-leastcorell, v) = P, (¢]) and, as we
shall see, the -nucleolus of (\, v) is a subset of coré\, v).

In the next iteration we solve

(P)) max e
st.  x € P/(e)
X(S) > v(S)+€f(S) (S¢ FixP)(e])).

If (P,)) is unbounded, then the-nucleolus of {, v) is equal toP; (¢}). Oth-
erwise we have an optimal vale¢ > ¢, and we proceed to

(P)) max e
st.  x € Pj(e)
X(S) > v(S)+€f(S) (S¢ FixP)(e)))

etc. until
(P') max e
st x € PB'(h
X(S) > uw(S)+ef(S (S¢ FixP'(¢)
is unbounded and thé-nucleolus of (N, v) is equal to the set
Pite)) (cP (¢ pc...cP(e)).

Note that in Example 2.4 it turns out that the nucleon of an investment game
(N, v) is equal to its multiplicative least core, which contains exactly one allo-
cation. However, Example 2.6 already shows that in generaf thecleolus
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can consist of more than one vector. Obviously, theucleolus of(N, v) is a
unique imputation if and only ifi } € Fix P'(e!) foralli € N. The following
proposition can be of importance for checking this condition.

Proposition 2.2 Let f: 2N — R, be a priority function and let (Nv) be a
game with nonempty f-nucleolus. IfS) > 0for a coalition() # S# N then,
in some stage of the computation procedure for the f-nucleolus,af);NS
will be fixed, i.e., & Fix P’ (¢) holds for some & 0.

Proof: If (Plf) is unbounded therfi = 0 holds. Assume that thé-nucleolus
of (N, v) is the setP, (¢) for somer > 0 andS¢ Fix R (&') is a coalition
with f(S) > 0. Letx be an imputation irP' (¢). With respect to the linear
program(P,".,) we have

v(N) = X(N) = X(S) + X(N\S) > v(S) + €f (S) + X(N\S)
implying an upper bound

_ v(N) —(S) — x(N\S)
< S ,

a contradiction. O

Corollary 2.1 Let f: 2N — R, be a priority function with fi) > 0 for all
i € N. Ifthe f-nucleolus of a game (N) exists then it is a unique allocation.
O

Examples off -nucleoli satisfying this condition are the (classical) nucleolus
and the per-capita nucleolus.

Corollary 2.2 Let f: 2N — R, be a priority function with {S) = 0 if and
only if ¢(S) = 0for all SC N and let(N, ¢) be a cost game with(&N) > 0.
If the f-nucleolus of (Nc) exists then it is a unique allocation.

Proof: If (Plf) is unbounded therf (S) = 0 and therefore(S) = 0 for all
S c N. Together withc(N) > 0 this would imply that thef-nucleolus of
(N, v) is empty.

Now assume that thé-nucleolus of (\, ¢) is a setP/ (erf) containing more
than one vector. Then there exists a playerN with {7i} ¢ FixP'(¢). By

Proposition 2.2¢(i) = 0 must hold. Supposec B’ (&). If N\i is fixed by
P’ (&) then, becaus&(N) = c(N), {i} € FixR'(¢/), a contradiction. If
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N\i is not fixed then, again by Proposition 2&N\i) = 0. By our assump-
tionalsof (i) = f(N\i) =0, and we have

c(N) = x4+ x(N\i)
< c(i) —€ f(i)+c(N\i) — & F(N\I)
= O,
again a contradiction. O

By this resultf-nucleoli, such as the nucleon and th@ucleolus withf (S) =
°|(—SS‘) for all ) # S# N, contain at most one allocation if they are applied to a
cost game.

2.5 The Shapley value

Recall that a value is a solution concept that prescribes at most one allocation
for every gameN, v). Shapley [1953] introduced the following value, which

is nonempty for any game\(, v).

Definition 2.6 The Shapley valug (N, v) of a game(N, v) is defined as

$i(N,v)= )" |S|!(|N|_|S‘_1)!<U(Sui)—v(8)) foralli € N.

Tt INJ|!
O

The Shapley value for a playecan be interpreted as an expected allocation.
If i joins a coalitionS, then this is rewarded with itsiarginal contribution

v(SUI) — v(S). The probability that joins a coalition of sizeS is set to‘ﬁ|

for all sizes 0< |§ < |N|—1 anol(lﬁ”s‘*l)’l for all coalitions of sizeS|. This

results in a final probability equal t8LNS=D!,

INJ!

The Shapley value satisfidédon Sym Dum Add andInv. Shapley [1953]
even proved a stronger result.

Theorem 2.4 The Shapley value is the unique value that satisfies Sym, Dum
and Add. 0O
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The Shapley value has been widely studied in the literature (see, e.g., Faigle
and Kern [1992], Evans [1996], Driessen and Paulusma [2001], Sprumont
[1990]). In general one has to compute all valu€S) to obtaing(N, v).

Hence for most classes of games computing the Shapley value cannot be done
in polynomial time.

The following example shows thai N, v) is not necessarily a core vector for
agame N, v).

Example 2.7 Consider a 3-person gami (v), whereN = {1, 2, 3} andv is
given by

vl = 0 vl,2 = 2
v2) = 0 v1,3) = 3
v3) = 0 v2,3) = 4

v(N) = 5.

Sincex € R3 given byx; = 0, x, = 2 andxz = 3 is easily seen to be a core-
vector, corel, v) is nonempty. Computing the Shapley value yields

13

7 10
¢1(N’ U) = 65 ¢2(N9 U) = E and ¢3(N9 U) = g

¢(N, v) is not in core{, v), because coalitiog2, 3} receives%3, which is
less tharv(2, 3) = 4. O



Chapter 3

Minimum cost spanning tree
games

In a minimum cost spanning tree game the players are represented by nodes
in a complete graph and the cost of a coalition is equal to the weight of the
corresponding minimum spanning tree. In Section 3.1 we treat some basic
theory on minimum spanning trees of a graph. Next we give the definition of

a minimum cost spanning tree game.

In Section 3.2 we discuss the core of a minimum cost spanning tree game.
Granot and Huberman [1981] prove that these games have a nonempty core
by showing that certain vectors are core members. However, these allocations
may not be acceptable from a modeling point of view, and Granot and Huber-
man [1984] present some ways to construct other core allocations from these
vectors.

In Section 3.3 we study thé-least core of a minimum cost spanning tree
game for various priority functiong : 2N — R,. This is a more general
approach than the approach followed by Granot and Huberman [1984]. We
prove that for a large class of priority functioriscomputing an allocation

in the f-least core of a general minimum cost spanning tree gamérs

hard. As a consequence also computingucleoli, such as the nucleolus, the
nucleon and the per-capita nucleolus of minimum cost spanning tree games,
is in generalN"P-hard.

33
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3.1 Introduction

3.1.1 Minimum spanning trees

Suppose an electricity network is to be built connecting a number of house-
holds to a common power station. Installing an electricity cable between any
two households and between any household and the power station is possible,
but will cost a certain amount. Then the first task is to construct a network
that connects every household to the power station and that has minimal cost.
This example belongs to a class of problems where a number of users must
be connected to a common supplier, and it can be modeled as a minimum
spanning tree problem.

Definition 3.1 Let G= (V, E) be a connected graph with a positive weight
functionw > 0 defined on the edge set E. Then a minimum spanning tree
(MST) is a spanning tree*Tof G that has minimal weight, i.e.,

w(E(T*)) = min{w(E(T)) | T is a spanning tree of &
O

Computing an MST of a grapB = (V, E) can be done in polynomial time by,

for instance, the algorithm of Kruskal [1956] or the algorithm of Prim [1957].

In the first algorithm an edge with minimal weight is chosen and afterwards
edges with weight as small as possible are added as long as no cycle occurs.
In the end an MST has been constructed.

Algorithm of Kruskal
(1) SetE’':=10.
(2) IF |[E’| =|V|—1 THEN outputT = (V, E’). STOP.
(3) Choose an edgé€ € E\E’ such that

w(€) =min{w(e) | e€ E\E and(V, E' Ue) does not contain a cycje

(4) SetE' := E'U{e}. GOTO (2).
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The second algorithm starts with an arbitrary nod&/inFrom this node it
constructs a tree with minimal weight that will be extended node by node
until it spans the whole graph.

Algorithm of Prim :
(1) SetV’':= {v} for somev € V and setE’ := (.
(2) IF V' =V THEN outputT = (V, E). STOP.
(3) Choose an edge, j) € Ewithi € V' andj € V\V’ such that

w(i, j) =min{fw(k, 1) | (k1) € E, ke V', € V\V'}.

(4) SetV':=V'U{j}andE := E' U (i, j). GOTO (2).

Example 3.1 Consider a complete grajgih= (V, E) on five nodes with weight
function w : E — R, as indicated in Figure 3.1. The trde with edges

Figure 3.1

(0,1),(1,3), (1,4) and (2, 4) and weightw(T) = 7 is easily seen to be an
MST of G. This MST is not unique: For instance, the tréewith edges
(0,4),(1,4), (2,3)and(2, 4) is also an MST ofG. O
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The following proposition (see, e.g., Aarts [1994]) shows that, given an MST
T of a graphG, each induced subgraph that is connected has an MST that
contains all edges of with both end nodes in the induced subgraph.

Proposition 3.1 Let G= (V, E) be a connected graph. Then for every MST
T of G and every set\C V, for which Gy is connected, an MST of G|y
exists such that

E(T) N E(Glv) € E(T).

Proof: Use the algorithm of Kruskal to construEt Suppose that in a certain
stage of this algorithm the edgée E(T) N E(G|y/) is added toE'. Since
w(€) =min{w(e) | ec E\E'}, we have that

w(€) =min{w(e) | e€ E(G|v)\(E' NE(G|v))}.

Furthermore(V, E' U €), and thereforgV’, (E' N E(G|v/)) U €), does not
contain any cycle. This means that we can apply the algorithm of Kruskal for
the construction of an MST’ of G|y, in such a way that we first choose the
edgesinE(T) N E(G|y/). O

3.1.2 Minimum cost spanning tree games

Consider again the example of an electricity network. After constructing a
network that connects each user to the power station with minimum cost, this
cost has to be divided somehow among the users. Such an allocation problem
can be modeled as a minimum cost spanning tree game.

Definition 3.2 A minimum cost spanning tree garfdCST-game) N, ¢) is
determined by a sét of players, asupplynodes ¢ N, a complete graph with
node seV = N U {s} and by a weight functiom > 0 defined on its edge set.
The costc(S) of a coalitionS C N is the weight of an MST in the subgraph
induced bySuU {s}. O

In the definition above we see thatN) is the weight of an MST in the orig-
inal graph, which is exactly the minimum total cost of constructing the net-
work. Because we only consider positive weight functiangor any MCST-
game (N, ¢) we have

c(S)+c(T) >c(SUT) forallSTCN,SNT =0.
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So an MCST-game isubadditivewhich makes the assumption that all play-
ers decide to work together in order to divide the cg$i) more likely.

The underlying discrete structure of an MCST-gam ) is a complete
graphG and an edge weighting. Let < w > denote the maximum size of
the edge weights, i.es w >:= max{< w(i, j) >}. We define< N,c >=
IN| < w >.

A basic observation is now the following. If a node N occurs as a leaf in
some MSTT for G and ife is the unique edge i incident withi, thenT\e

is an MST for the subgraph induced b4xi. So in this case we immediately
deduce that

c(N\i) =c(N) —w(e). (3.1)

Example 3.2 Consider again the graghin Example 3.1. If we assume node
0 to be the supply node then we obtain an MCST-gahec], whereN =
{1,2,3,4} andc: 2N — R, is given by

cl) = 2 ¢1,2) =4 c¢c1,23) =7 cN = 7.
c2 =3 ¢1,3) =5 c1,249 = 4
cB =4 c1,49 =3 c¢c1,3,49 =6
c4) = 2 ¢c23) =6 c¢c234 =6
c2,4) = 4
c3,4) = 6

3.2 The core of a minimum cost spanning tree
game

Minimum cost spanning tree problems have been widely studied in the lit-
erature. After their introduction by Bird [1976], various results about the
core and nucleolus were established (see, e.g., Aarts [1994], Faigle, Kern and
Kuipers [1998a], Granot and Huberman [1981], [1984]).

Granot and Huberman [1981] proved the following theorem, which shows that
any MCST-game has a nonempty core and that a core allocation can be found
in polynomial time. A core allocation as defined below is callestandard

core allocation We denote the standard core allocation corresponding to an
MST T* by x*.
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Theorem 3.1 Let T* be a minimum spanning tree belonging to an MCST-
game (Nc). Then the vector*xc RN that allocates to player £ N the
weight of the first edge i encounters on the (unique) path fromito $is @
vertex of core(NCc). O

However, Granot and Huberman [1981] also point out that standard core allo-
cations may not be acceptable from a modeling point of view. The following
example illustrates this.

Example 3.3 Consider an MCST-game\(, c) obtained from a complete graph
G on four nodes with edge weighting as indicated in Figure 3.2. Clearly,

Figure 3.2

the treeT* with edges(s, 1), (1, 2) and (1, 3) and weightw(T*) = 12 is an
MST of G. The corresponding standard core allocators given byx; = 10
andx; = x5 = 1. So most of the cost is charged to player 1, although player
2 and 3 highly depend on this player for their connectios tbhis motivates

the search for other core allocations such as the veaoren byx; = 2 and

Xo = X3 =5, O

The question arises how to find possibly more appropriate core allocations
and what is the computational complexity of computing these allocations.

Granot and Huberman [1984] propose the following procedure to obtain core
allocations not equal to a standard core allocation: Tebe a minimum



3.2 The core of a minimum cost spanning tree game 39

spanning tree belonging to an MCST-gani& €) determined by a complete
graphG with node seV = N U {s} and edge weighting.. Suppose is not a
leaf of T*. Let K (T*) denote the set almmediate followersf nodei in T*,
ie.,

F(T*) ={j € N|iis the 1st nodg encounters on the path frojto sin T*}.

For all core allocationg we havex(N) = ¢(N) andx(N\i) < c(N\i). These
constraints imply that according # € core(N, c) at least an amount of

c(N) — c(N\i)

is charged to node If x* > c(N) — c(N\i) then one could try to modify the
standard core allocatiox* such that node pays less, while the immediate
followers of i are charged a higher amount for their connectiors toa i.

For this purpose, Granot and Huberman [1984] introduced the so-oadiak
demand operationThis operation can be applied on an arbitrary allocation
x € RN, but here we show only its effect on standard core allocations. For
those allocations the method transfers an amount froonF (T*) in such

a way that the resulting vector is still a core vector and playisrcharged
exactlyc(N) — c(N\i).

In order to explain the method we have to use Proposition 3.1. By this propo-
sition, there exists an MST’ of the subgraph of5 induced byN\i such
that

E(T*) N E(G|n) € E(T). (3.2)

For eachj € F(T*) there exists an edgsg that is the first edgg encounters
on the unique path fromto sin T’ that is not an edge if*. Then the weak
demand operation applied i by i on x* with respect tal’ yields the vector
X € RN given by

c(N) — c(N\i) if j =i
Xj = w(e;) if j € R(TY

X; otherwise.

The example below shows that in ca8eas not the unique tree satisfying (3.2)
the weak demand operation can yield a different vector.

Example 3.4 Let (N, ¢) be an MCST-gameN, c) obtained from a complete
graphG on five nodes with edge weighting as indicated in Figure 3.3. The
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Figure 3.3

treeT* with edges(s, 1), (1, 3), (1, 4) and(2, 3) is an MST ofG with weight
w(T*) =5. Thenc(N) = 5 andx* € R*is the vecton(1, 2,1, 1).

Node 1 is not a leaf of * and its set of immediate followels, (T*) is equal
to {3, 4}. The treeT’ with edges(s, 2), (2, 3) and(3, 4) is an MST ofG|\1
with weightw(T’) = 9. Soc(N\1) = 9. The weak demand operation by 1
on x* with respect tal’ yields the allocatiorx! = (—4, 2, 4, 3). Also the tree
T" with edges(s, 4), (2,3) and (3, 4) is an MST ofG|y\; satisfying (3.2).
Applying the weak demand operation with respecttoyields the allocation
X =(-4,2,3,4). O

Note that in Example 3.4 botk and%? are core allocations. The following
result by Granot and Huberman [1984] states that this holds for all vectors ob-
tained after applying a weak demand operation on a standard core allocation.

Theorem 3.2 Let T* be an MST belonging to an MCST-game ¢Ndeter-
mined by a complete graph G with edge weightind_eti < N, and let T be
an MST of Gy; such that

E(T) NE(G|wi) € E(T).

Then the vectok € RN obtained by the weak demand operation applied in
T* by i on X with respect to Tis an element in core(]\t). O
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Remark 3.1 From the proof of Proposition 3.1 it is immediately clear that
any weak demand operation can be performed in polynomial time. O

The example below shows that applying the weak demand operation on a stan-
dard core allocation* does not necessarily have to yield a “new” allocation,
which is not again a standard core allocation.

Example 3.5 Let (N, ¢) be an MCST-gameN, c¢) obtained from a complete
graphG on three nodes with edge weightimgas indicated in Figure 3.4.
Both T, with edge seE(T;) = {(s, 1), (1, 2)} andT, with edge seE(T,) =

Figure 3.4

{(s,2), (1,2)} are minimum spanning trees &. The corresponding stan-
dard core allocations aré = (4, 2) andx? = (2, 4). The weak demand op-
eration by 1 onx! yieldsx? and the weak demand operation by 2x8ryields
xt. O

Besides a weak demand operation, Granot and Huberman [1984] also intro-
duce thestrong demand operatiorLet T* be a minimum spanning tree be-
longing to an MCST-gameN, c). Fix a certain player € N that is not a

leaf in T*. Then the strong demand operation is a function that assigns to
every allocatiorx € core(N, c) the setS(x) C core(N, c). This set contains

all allocationsy € core(N, c) that can be obtained by transferring the max-
imal amount fromx; to F(T*) such that the resulting vector is still a core
allocation. Clearly, an allocatior obtained after applying a weak demand
operation byi on x* is an element ir§ (x*). An explicit description of the set

S (x) is not known for a general MCST-game. However, in case the MIST

is a path with the supplgas one of its two end point§ (x) contains exactly

one point, and Granot and Huberman [1984] were able to give an expression
for this singleton.
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3.3 The f-least core of a minimum cost spanning
tree game

3.3.1 Introduction

In the previous section only new core allocations were obtained from standard
core allocations by transferring a certain amount from one fixed player to
its set of immediate followers. Here we follow a more general approach by
considering thef -least core of an MCST-gameél( c) for a number of priority
functions f # 0. Recall that thef-least core of a cost gamél(c) is the set

of allocation vectors that are optimal solutions of the linear program

(f-LC) max e
st. xX(S) < c(9 —¢€f(S) (S#£0,N)
X(N) = c(N).

Since corel, c) is nonempty, by Proposition 2.1 thieleast core of an arbi-
trary priority function f is a nonempty subset of coié(c).

We are interested in the computational complexity of computing an element in
the f-least core for a priority functiorii. First we show that this approach can
be seen as a generalization of the methods described in the previous section.

Let (N, c) be an MCST-game. Assume that a playerN is more important
than the other players, for instance, by its position in the network. We can
express this by a priority functiof : 2N — R, given by

i B 1 if S={i}
f(S = {O otherwise.

The following proposition gives a characterization of theleast core of an
MCST-game.

Proposition 3.2 Let (N, c) be an MCST-game andsi N. Then
fl-leastcoréN, c) = core(N, ¢) N {x € RN | x, = c(N) — c(N\i)}.

Proof: Supposex ¢ f'-leastcorek, ¢). The feasibility constraintx(N) =
c(N), X(N\i) < c(N\i) together withx, < c(i) — € yield the upper bound

€ < c(i) + c(N\i) — c(N).
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Let €* = c(i) + c(N\i) — c(N). Thene* is the optimal value of f'-LC), if
we can show that a feasible solution €*) of ( f'-LC) exists.

Now let T* be an MST belonging tol, c). If x* = c(N) — c(N\i) we have

X = c(i) — €" and, sinces* € core(N, c), X (S) < c(S) for all SC N. Other-
wise the vectok obtained after applying a weak demand operation by player
i in T* on x* satisfiest; = c¢(N) — c(N\i) = c(i) — €*, and by Theorem 3.2

X is a member of coréy{, c), and thusx(S) < c(S) for all SC N. Hencec* is

the optimal value of f'-LC).

Note thate* > 0. By the feasibility constraints aff'-LC) an allocationx is
an element inf'-leastcorel, c) if and only if

Xi = Cc(N) — c(N\i) and x(S) <c(S) forall) #S# N,
which proves the proposition. O

From the proof of Proposition 3.2 it is clear tr@tx*) C f'-leastcorek, c)

for any MST T* belonging to N, ). In particular an allocatio& € RN ob-
tained after applying a weak demand operation oy x* is an element of
fi-leastcorel, c). Because such a vector can be computed efficiently (cf.
Remark 3.1), the following corollary holds.

Corollary 3.1 Let (N, ¢) be an MCST-game andsi N. Then computing an
element in fleastcore(N c) can be done in polynomial time. O

In the following we will introduce a class of priority functions for which com-
puting the f-nucleolus isN“P-hard. This class contains both the nucleolus
and the nucleon. Below we give an example in which the nucleolus and the
nucleon are computed.

Example 3.6 Consider an MCST-gamé\(, ¢) obtained from a complete graph

G = (V, E) on three nodes and edge weights as defined in Figure 3.5. The
tree T* with edges(s, 1) and (1, 2) is an MST ofG and the standard core
allocationx* is given byx; = 10 andx; = 1, which may be considered to be
unfair with respect to player 1. Solving the linear program

max €
st. X +X% = 11
X1 < 10—¢
X2 < 11-—€
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Figure 3.5

yields the unique (additive) least core allocatiogiven byx; = 5 andx, = 6.
Solving the linear program

max €
st. X +x = 11
X1 < 10— 10e
Xo < 11-11e

yields the unique multiplicative least core allocatipgiven byy, = 52% and
Yo = 5%—(13 U

In Example 3.3 both the additive and multiplicative least core are equal to the
singleton{ (0, 6, 6) }.

The rest of this chapter is based on Faigle, Kern and Paulusma [2000]. We
will define a class of priority functions, for which computing an element in
the f-least core of an MCST-gameé\( c) turns out to be\V'P-hard. This class
contains priority functiond such as

f(9=1 forall() # S# N

f(S=c(S forall)£S#£N

f(S=|9 forall() #S#N.
The proof uses a reduction from minimum cover problems. We show that
computing a least core allocation for a special class of graphs introduced in
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Faigle, Kern, Fekete and Hochsiér [1997] is alreadyVP-hard. These
graphs will be treated in Section 3.3.2. Section 3.3.3 contains the proof of
the theorem. In Section 3.3.4 the functions mentioned above are treated. By
giving sufficient conditions for a priority functiori to satisfy a number of
properties defined in Section 3.3.3, we prove that computing an element in
the f-least core of MCST-games i8P-hard for these functions. Megiddo
[1978] and Granot, Maschler, Owen and Zhu [1996] give a polynomial al-
gorithm for computing the nucleolus in case the underlying graph is not a
complete graph but a tree. Faigle, Kern and Kuipers [1998a] show that com-
puting the nucleolus of a general MCST-gameé\i$-hard. Here we obtain

this result as an immediate corollary from our main theorem. Also, as a con-
sequence of this result, computing the nucleon and the per-capita nucleolus of
MCST-games is in generAl"P-hard.

3.3.2 Minimum cover graphs

In this section we define a minimum cover graph and we show how we can
construct an MCST-game from such a graph.

Letg e N, and letU be a set ok > g elements andlV be a set of § elements.

Consider a bipartite graph with node $&tJ W (partitioned intod and W)
such that each node< U is adjacent to exactly three nodeswh We say
that nodeu € U coversits three neighbors ilV.

A setD C U is called acoverif eachw € W is incident with someu € D.

A minimum coveis a cover that minimizefD|. Finding a minimum cover

is a well-knownA/P-hard problem. It includes th& P-complete problem
X3C (cf. Example 1.2). Below we show that we may restrict ourselves to a
subclass of minimum cover problems.

Proposition 3.3 Finding a minimum cover under the following assumptions
is N'P-hard.

(C1) Each node in W has degree 2 or more.
(C2) The size of a minimum cover is at most @.

Proof: Supposev € W is a node with degree 1 is connected ta andu is
also connected to; andw,. Add a noddi to U and connect it tav, w; and
w,. The size of a minimum cover will not change. Hence computing the size
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of a minimum cover, in case (C1) holds, is at least as hard as computing the
size of a minimum cover in the general case.

To show the validity of (C2), add nodes, u,, ... , uy to U that coverW.
Eachu; (i =1, ..., q) covers exactly 3 nodes M. Next deletay,. The size

of a minimum cover will be less than or equalder 2. If the size is greater
thanq, the original problem has no exact cover. If the size of a minimum
cover is equal ta, then also deleta,_1. Again the size of a minimum cover
will be at mostq + 2. If the size is greater thag the original problem has

no exact cover. If the size is equal gpalso deleteu,_, and so on. In each
step of the procedure only problems that have a minimum cover with size at
mostqg + 2 are considered. Ii; would be deleted, one arrives at the original
problem. Hence computing the size of a minimum cover, in case (C2) holds,
is at least as hard as computing the size of a minimum cover in the general
case. O

From now on we assume that conditions (C1) and (C2) hold. We construct
an MCST-game from a minimum cover problem as follows (cf. Faigle, Kern,
Fekete and Hochatfler [1997]). First we defineminimum cover graph G-

(V, E). The node set o consists ofU U W and three additional nodes:
The Steiner node S$Stheguardian gand the supphg. The edge seE of G
comprises the following (cf. Figure 3.6).

. all edgese from the bipartite graph o U W, each of them having
weightw(e) = q+ 1;

. foreachu € U, an edge&u, St) betweeru andStwith weightw (u, St) =
g and an edgéu, g) betweeru andg with weightw(u, g) = q+ 1;

. an edgg St g) betweenStandg with weightw(St, g) = q+ 1;

. an edgg(g, s) betweeng ands with weightw(g, s) = 2q — 1.

We extendG to the complete grapfs on V with weights induced fronG,
i.e., ife= (i, j) is an edge irG, thenw(i, j) is the weight of a shortest path
fromito jinG.

An MST in G is obtained by connecting eaahe W to someu € U by which
it is covered. Such a € U exists because each node= W has a neighbor
in U (indeed, it has at least 2 neighborddy. Then one connects eaake U
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2g-1

LS
Figure 3.6. a minimum cover graph

to St and finally connect$tto g andg to s. The resulting MST has a total
weight of

c(N) = 3q(q+1) + kq+ 3q.

Furthermore, by (C1), eacl» € W is covered by at leagtvo nodes inU.
Hence it is straightforward to see that the following property holdXor

(L) For eachv € U U W, there exists an MST in the graphG such that
is a leaf ofT.

3.3.3 Thef-least core of minimum cover graphs

Consider a grapl = (V, E) and its completiorG as described in the pre-
vious section. Thef -leastcorek|, ¢), relative to a priority functionf : 2N —
R,, of the corresponding MCST-game consists of all allocation vectors that
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are optimal solutions of the linear program

(f-LC) max €
st. xX(S) < c(9 —¢€f(S) (S#£0,N)
X(N) = c(N).

whereN = V\sandc(S) is the weight of an MST irG connectingSto the
supplys.

Suppose(x, €) is a feasible solution of f-LC). Then the feasibility con-
straintsx(N) = c(N) andx(N\i) < c(N\i) —ef(N\i) imply x(i) > c(N) —
c(N\i) + ef(N\i) fori € N. Hence, by property (L) of the previous section
and (3.1), we have the following inequalities

X(w) > gq+1+ef(N\w) (weW)
Xx(u)y > g+ ef(N\u) (ue ).

Furthermore, the coalitioB = N\ g can be connected to the supply nc
a total cost ott(N). Hence, the feasibility constraints 6f-LC) also imply

X(9) > ef(N\g).

This motivates the following definition.

Fore > 0, letx¢ € RN be the allocation defined by

X(w) = q+1+ef(N\w) forallw e W
x(u) = q+ef(N\u) forallue U
x(g) = €f(N\g)

X(St) = c(N)—x(UUWUQ).

By condition (f1) from Section 2.3, it is straightforward to check that the
following parameters do not depend on the particular representativéVV
orue Uu:

fr = f(N\w) (weW)
fu = f(N\u) (ueU).

Define for a coveD C U

ID|+29-1
ID|fu+3gfe + f(N\g)+ f(DUWUQ)’

€"(D)
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and let
e" =min{e"(D) | D C U coversw}.

To make sure that' is finite we assume thaft(S) > 0 wheneveS > 0 and
c(S) > 0.

Remark 3.2 SupposeD C U is a cover and consider the coaliti®@= D U
WU {g}. The cost(S) is easily seen to b&(S) = 3q(q+ 1) + |D|(g+ 1) +
29— 1,i.e.,c(S) only depends ofD|. Then, by (f1), alsdf (S) and, therefore
¢'(D) only depends onD|, i.e., satisfies(D;) = €' (D,) if |D;| = |D,|

for all coversD4, D, C U. As a consequence, we can a priori compute all
possible values off (D) for | D| ranging fromq to k. O

Lemma 3.1 If €* is the optimal value of f-LC) thene* < €.
Proof: Let (X, €*) be an optimal solution of f-LC). As we have seen, the
feasibility constraints imply

X(w) > g+14+€f” (weW)
x(U) q+ e fu (ue Vv

>
x(@ > €f(N\g).

SupposeD C U is a cover for whiche'(D) = €. Consider the coalition
S={g}UDUW. Then

X(S) > € f(N\g) + |D|g+ € |D| f“+3q(q+ 1) 4+ €*3qf"
whereas,
¢(S =39@@+1+[D[(q+D +29-1.
Sincex(S) < ¢c(S) — €* f(S), we get

< ID|+29-1 _
— |D|fu+3gfv+ f(N\g) + f(DUWUQ) '

*

€

0

We call a priority functionf : 2N — R, feasibleif f satisfies the following
properties (with respect to MCST-games on minimum cover graphs):
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(P1) €' is the optimal value of f-LC).

(P2 ForacoveD C U of sizeq < |D| < g+ 2, we have

e =e"(D) ifand only if D C U is a minimum cover.

Our main result can be formulated as follows:

Theorem 3.3 For the class of feasible priority functions, the problem of com-
puting an allocation vector x f-leastcore(Nc) of MCST-games i8/P-
hard.

Proof: Supposéx, €) is an optimal solution of f-LC). First we will show
that for allw € W

X(w) = q+1+effv,
The feasibility constraints aff-LC) imply

X(w) > gq+1+€f* (wew)
X(u)y > q+e'fu (ueu)
and x(g) > e'f(N\g).

Now let D C U be a cover for whicke = ¢7(D). Consider the coalition
S={g}UDUW. Then

3q9(q+1+€'f*)+|Dj(q+e" ') + € f(N\g)

IN

X(S)

IN

c(S) — €' (9
= ¢(S9—(D|+29-1)+(|D|+29—-1) — €' (9
= ¢(9 - (ID|+29-1) +€"(ID[ "+ 3gf* + f(N\g) + f(9) — €' f(S)

= 30(g+1+€"f¥)+|D|(q+ef fU) + €' f(N\Q).
Hencex(S) < c(S) — e f(S) implies that for allw € W

X(w) = q+14+€ffv.
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Hencex ¢ f-leastcorel, ¢) provides us with the value of the parametér
We can efficiently compute the siz®| of a minimum coverD C U as fol-
lows: Computes’(D) for |D| = q, |D|] = q+1 and|D| = q+ 2 (cf. Re-
mark 3.2). By (C2), it suffices to computd (D) only for these sizes. By
(P2),e" = €' (D) for at least one of these sizes. Note that a cdvef size
|D| < k— 2 implies the existence of covers with side| + 1 and|D| + 2.
Hence, by (P2), the size of a minimum coyBx will be the maximum of the
sizes for which equality holds.

Given an allocation vectox € f-leastcorel|, c), we can thus compute the
size of a minimum coveD in polynomial time. Hence the computation of
such a vector is at least as hard as the computation of the size of a minimum
cover. O

Since the core of an MCST-gam#l(c) is nonempty, we have that, the
optimal value of f-LC), is positive. Then thef-nucleolus of (N, c) is a
subset off -leastcorel, c) and the corollary below immediately follows.

Corollary 3.2 Forthe class of feasible priority functions, the problem of com-
puting an allocation vector x in the f-nucleolus of an MCST-gamecjhs
NP-hard. O

The next theorem gives a characterization of the set of feasible priority func-
tions f : 2N — RR,.

Theorem 3.4 The set of feasible priority functions: 2N — R, forms a con-

vex cone (minus £ 0).

Proof: Itis obvious that«f is feasible forx > Q if f is feasible. Now suppose
f,, f,: 2N — R, are feasible. We will show that := f, + f, is feasible. It
is straightforward to verify that for all covei3 C U,

i . €1(D)"(D)
€ (D)= (D) 1R (D)’

First we prove thaf satisfies (P2). Foracov@® C U of sizeq< |D| < q+2,
we have

e =e"(D) ifand only if D C U is a minimum cover.

“=" Suppose|D| is not minimum andD C U is a minimum cover of\V.
Since f; and f, satisfy (P2)¢"(D) < ¢"(D) ande™(D) < (D). Hence
e"(D) < €"(D), which implies that f (D) is not minimal.
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“«" SupposeD C U is acoverand’(D) < (D). Then at least one of the
two inequalitiess (D) < (D) ande2(D) < €"2(D) must be valid. Hence,

by (P2),D is not a minimum cover.
We now show that (P1) holds fdr. Above we have proved that
f EflefZ
€ = ——F".
el ef

By Lemma 3.1 it suffices to show that is a feasible value fo¢ f-LC).

Assume thatx}, ™) is an optimal solution of f;-LC), and that(x?, €2) is

an optimal solution of f,-LC). We show thatx, €"), wherex € RN is given

by

ef2xt(i) + ex2(i)
e el

is a (feasible) solution of f-LC). First note thatx(N) = c¢(N) becaused
andx? are allocations. Now suppofie S# N. Then

X(i) = forall i € N,

f,_f,
(S - (S = S — ——(f(9) + F(9)
€4 el
€2(c(S) — " F1(9) + " (e(S) — € fx(S)
€l 4 ef2

e2x1(S) + € 1x2(9)
el 4 ef2

AV

= X(S).

3.3.4 Sufficient conditions for\/’P-hardness

The purpose of this section is to present some conditions for priority functions
that are easy to check and imply feasibility. For example, they can be used
to prove feasibility of the three specific priority functions mentioned in the
introduction of this section. To state our conditions below, we introduce the
following notation: A coalitionS C N is connectedif the induced subgraph
G|sis connected.
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Conditions:

(8D f» < fU < @+3Hf"

(S2 There exists a numbévl € R, , independent off andk, for which

f(S) < Mfw forall ) £ S#£ N.

(S3 For all connected coalitionS, S C N with |§ > 2q and 0< [S| —
S <2

1 w
MCIERICTES TS

(S4 f(S) > 0wheneverS > 0andc(S) > 0.

Theorem 3.5 Let the priority function f: 2N — R, satisfy conditions (S1),
(S2), (S3) and (S4). Then f satisfies (P1) and (P2), provided q is sufficiently
large.

Proof. Let D C U be a cover with minimum size. We will prove that=
x*'(® ande := (D) are feasible fot f-LC). By Lemma 3.1 and the defini-
tion of e, €' =€f(D) is then the optimal value aff-LC). Because (D)
only depends onD| (cf. Remark 3.2)D can be any minimum cover. In the
end we will show thatf < ¢ (D) for all coversD C U that are not minimal.

Let® £ S# N maximizes(S) := X(S) — ¢(S) + ¢ (S). We have to show that
5(S) < 0. Suppos&(S) > 0.

Recall that

X(w) g+1+ef* forallweW
X(u) = g+ef" forallue U
x(@) = ef(N\g).

For the rest of the proof, we need the following relations.

gi € <§i (3.3)

If §(S) > 0, then|S| > %q. (3.4)
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Proof of (3.3): We have

and

IN

< (8D

<(C2

IN

~ (S1).(2)

>(C2)

AV

AV

ID|+29-1
|D|fu43qfv + f(N\g)+ f(DUWUQ)

ID|+29-1
|D|fu43qfe

ID|+29-1
|D|fw+ 3qf»

3g+1 1
4942 f»

31
4w

ID|+29-1
|D|fu+43qfw+ f(N\g) + fF(DUWUQ)

ID|+29-1

|D|(1+é)f”’+3qfw+2Mf“’

D[+29-1 1
D[+ 3q+2M + 2 f»

3g—-1 1 .
e S — D| >
49+ 2M + 2 fw (sincel D] =
21

3o (for g sufficiently large)
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Proof of (3.4): First we show that(St) < $g. We have
X(SH = c(N) — x(g) — kx(u) — 3gx(w)
< 3q+3q(q+1) +kg— kq— ekfu —3q(q+ 1) — 3qf®
= 3q — ekf" — €3qf"
< 3q — eqf" — €3qf" (sincek > q)
<G 3q-e4qfv
<33 %q_
Hence, in particulax(St) < q+ 1+ f!. Thus, forSC N we have
XS <GV (Q+ 1+ ef")|S + ef (N\g)
<GV (q+1+e+3) )G +eMfr
<G9 (a+2)|5+ M,
c(S > qS+q—-1 and
ef(S) <™ eMf?

§(3.3) M.
Hence
0 < X(S)—c(S) +€f(S)
< @+2)[§+M-qS-q+1+M
= 2|S—q+1+2M.

Then |§ > ig—1—M > iq (for gsufficiently large).
2 2 3

This completes the proof of (3.4). We now continue the proof of the theorem
by establishing a sequence of claims.
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Claim (1): If Ste Sthen|S < |[N|—1.

Supposes= N\i for somei € {g} UU UW. Then, by definition ok, §(S) =
0, a contradiction, since we assua(&) > 0.

Claim (2): Ste Sor ge S.

Suppos6sC UUW, S=SUSU...UuSwithS (i=1,...,r)connected.
By connecting one subs& to swith cost at least@+ (|]S| — 1)(g+ 1) and
by connecting the other subs@&s(j # i) to § with cost at least@+ (|S;| —
1)(g+1),itis clear that

(S > 39+2qr -1+ (S|-D@+D)

i=1
= r(q-1+9q+[S(@+1D.
Furthermore we have

X(S = [SnUlefu+[SNW|ef” +[SNU[g+|SNW|(g+ 1)
<GY|SNUJeL+ 7 +[SNWef” +[SNU[g+[SNW|(q+1)
<G 2SNU|(L+ ) +3ISNW|+[SNU|g+[SNW|(g+1)

2
= ML SN U|+ (g + §)[SNW

)

and
ef(S) <@ Mef?
<B3 M,
Since each node d is adjacent to exactly three nodesih fori=1,...,r
ISNW|<2|SNU|+1.
Hence

d d NW-1 1 1
snul=YIsnul>Y :%:?S”W'_E“
i=1 i=1
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Then
5(S) =

IN

<

<

X(S) —c(S) +€f (S

W33ISAU| + (q+ DISNW| —r(g—1) — q— [S(q+1) + M
f1SNW| - LFSnU|—r(@-1)—q+ M

SNW|+ F2Gr —3[SNW) —r(q—-1) — g+ M

M+2—£q (since|SNW| < 3gandr > 1)

0 (for g sufficiently large)

a contradiction, since we assuiES) > 0. Henceg € Sor Ste S,
Claim (3): SNU coversSN W.

Up to now, we have proved that an MST f8rooks as follows. Eachu €
SN U is connected tg (with costq+ 1) or to St(with costq). Each covered
w € SNW s connected to a nodec SNU (with costq+ 1). Each uncovered
w € SN W is without loss of generality joined tg (with cost 21+ 2) or to
St (with cost 21+ 1). Now supposev € SN W is not covered bySN U.
Supposew is covered byu(¢ S). Then

and

>(S2)

c(S\wuu) < c(S-(q+1),

S(S\wuUu) — 8(S)
X(U) — X(w) 4+ ¢(S) — c(S\w U U) + e(F(S\wUu) — £(S))

e(f!— ")y +q—eMf?

>(S0.63) g 2M

>

0 (for q sufficiently large)

contradicting the maximality of(S). HenceSN U coversSN W. In particu-
lar, Sis connected and, by (3.4)5| > zq.
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Claim (4): Scontains alkv covered bySnU.

Supposeaw € W is covered bySNnU andw ¢ S. By claim (1), |[N\S > 2.
ThenSu {w} # N and

S(SUw) —=486(S = X(w) +¢(S) —c(SUw) +e(f(SUw) — f(9))
= e(f”+ f(SUw) — (9)

>0,
contradicting the maximality of(S).
Claim (5): St¢ S.

SupposeSte S If SNU = U then, by claim (4),SNW = W. HenceS=
N\ g in contradiction to claim (1). Supposez S. By claim (1), [IN\§ > 1.
ThenSuU {u} # N and, by claim (3)c(SU u) = c(S) 4+ g. We have

s(SUuU) —48(S = X(U) +¢(S) —c(Suu) +e(f(SUuU) — f(9))
= e(f'4+ f(Suu) — 1(9)
>GD e(fv 4 f(Suu) — £(9)

>0,
contradicting the maximality of(S).
Claim (6): SANW =W.

Supposav € W\S. By claim (4), w is not covered bysn U. Because each
node inW has at least two neighbors h, we havg SN U| < |U| — 2. Sup-
posew is covered byu(¢ S). By claim (2) and claim (5)g € S. Then
c(SUuUw)=c(S+29+2and

S(SUUUw) —8(S)
= X(U) + X(w) +¢(S) —c(SUuUw) +e(f(SUUUw) — £(S))
= —1+e(f'+ 4+ f(SUULU W) — ()
~ (S1),(S3) _1+€%fw

2(3.3) O,
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contradicting the maximality of(S).
Claim (7): S={g} U D UW for some minimum coveb C U.

Up to now, we have proved th&= {g} U D’ U W for some coveD’ C U.
SupposeD C U is a cover with|D| < |D’|. Without loss of generality we
may assume thaD| = |D’| — 1 (otherwise add a sufficient number of nodes
ueUtoD). LetS={g} UDUW. Itis obvious thax(S) = x(S) — q— ef!
andc(S) = c(S) — g— 1. Then

8(S) — 8(9)

— 14+e(f(S— f(S) — fY)

SCINC I e b

2(3.3) O,

contradicting the maximality of(S).
We have proved that

S={g} U DUW for some minimum coveb C U.

Then (by definition ofe) §(S) = 0. Hence(x, ¢) is a feasible solution of
(f-LC). Because ' (D) only depends ohD|, D can be any minimum cover.
This proves (P1) and the="-part of (P2).

We complete the proof by showing thdt < € (D) for all coversD C U that
are not minimal. We have already proved that for all coalitibesT £ N

§(T) <8(5 =0,

whereS= {g} U DUW andD C U can be any minimum cover. L& C U
be a cover that is not minimal ar8l = {g} U D’ U W. In the proof of claim
(7) we have shown that there exists a colze. U with |D| = |D’| — 1 and
8(S) > 8(S), whereS= {g} U DUW. Hence

8(S) < 8(S) < 8(S) =0,

which is equivalentte’ < ¢"(D’). 0
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Consider again the priority functions mentioned in the introduction:

f(9=1 forall() # S# N

f(9=|9 foralld#S#N

f(S)=c(S forall® £ S#£ N.
It is straightforward to check that these functions satisfy (S1), (S2) and (S4).
Furthermore, the first two functions obviously satisfy (S3). In order to show
that condition (S3) is also valid fof given by f(S) = c(S) for ) # S# N,
we deduce that for a connected coaliti®of size|S > iq

¢S <[S(@+DH+29-1<[Sq+7|Y (3.5)
and
c(S >[Sg+9g—-1>[ga. (3.6)

By using these two inequalities condition (S3) is easily seen to be satisfied.
Hence, by Theorem 3.3 and Theorem 3.5, the problem of computing an al-
location vectorx € f-leastcorel, c) of MCST-games isV'P-hard for these
functions. By Corollary 3.2 computing the correspondirgucleoli isNP-

hard (see also Faigle, Kern and Kuipers [1998a]ffar 1).

Theorem 3.6 Computing the nucleolus, the nucleon and the per-capita nu-
cleolus of MCST-games.i¢P-hard. O

Furthermore, one can verify that functions, such as

f(S) =c(S|9 forall) #S#N

f(S) = C‘(—SS‘) forall ) # S# N,
satisfy (S1), (S2), (S3) (use (3.5) and (3.6)) and (S4). Hence these functions
also belong to the class of feasible priority functions.

We end our discussion by mentioning some priority functions for which our
approach does not yield ayP-hardness result. In particular, functions that
give high priority to small conditions, such as

f(S =elS forall)#S#N

f(S):% forall ) £ S# N,

violate conditions (S2) and (S3).
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As a generalization of the class of priority functiofis suppose there is a set
T C N of important individuals with siz€T | > 2. One may then consider the
priority function

1 ifS={i},ieT
0 otherwise

f(S = {

which does not satisfy (S4).

Whether thef-least core orf-nucleolus for any of these functions can be
computed efficiently is still an open problem.






Chapter 4

Matching games

In a matching game the players are represented by nodes in a certain graph and
the profit of a coalition is equal to the weight of the corresponding maximum
matching. Section 4.1 contains an introduction into matching theory. We treat
the Gallai-Edmonds decomposition, which plays an important role in the rest
of this chapter.

In Section 4.2 we consider general matching games. We show that an element
in the least core can be computed efficiently. Furthermore, in case the core is
nonempty, the nucleolus can be computed efficiently.

In Section 4.3 we restrict ourselves to matching games on a graph, where the
weight on an edge is defined as the sum of certain weights defined on the
incident nodes. Cardinality matching games belong to this class. We show
that the nucleolus can be computed efficiently. This result is based on an
alternative characterization of the least core, which may be of independent
interest.

4.1 Matching theory

In this chapter we shall need some fundamental results and concepts from
matching theory, which will be treated in this section. For more on matching
theory we refer to the book of Lasz and Plummer [1986]. We start with the
following example as given in Shapley and Shubik [1972].

Consider a real estate market. In this market we have a ggugg home-
owners and a groufl, of prospective purchasers. The first group tries to sell

63
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a house, while the second group is interested to buy one. Now supgoNg

is a purchaser, who is interested in the house of pearsoN;. Letw(i, j) de-
note the difference between the maximum offef ahd the minimum selling
price ofi. If w(i, j) > 0, person and j are willing to do business with each
other. Thenw(i, j) can be interpreted as a “common profit”.

We can model this situation by a bipartite graptwith node classedl; and

N,. Between two nodesc N; andj € N, an edgei( j) exists if and only if
w(i, j) > 0. Then the problem of maximizing the total profit comes down to
anassignment problenne., to find a maximum weight matching ifbgartite
graph.

We can generalize these kind of problems to nonbipartite graphs.iEavh

has exactly one good to offer. He can do business with at most one other
person. A paii, j € V, each with their own good to offer, obtains a common
profit w(i, J), if they do business with each other. They are only willing to
do that, ifw(, j) > 0. So an edge betweanand j exists if and only if

w(i, J) > 0. Take for example a second hand car market, where each person
has one car and some money. The problem of maximizing the total profit is
called amaximum weight matching problem

Definition 4.1 Let G = (V, E) be a graph with a weight function defined
on the edge s€E. Then amaximum weight matchirig a matchingv* in G
that has maximum weight, i.e.,

w(M*) =max{w(M) | M C Eis a matching.
O

Example 4.1 Consider the grap® = (V, E) with edge weightingw as indi-
cated in Figure 4.1. The matching* = {(1, 6), (3, 4), (5, 8)} isa maximum
weight matching inG with weightw(M*) = 15. Node 2 and 7 are not cov-
ered byM*. The matchingM is not the unique maximum weight matching,
since the matchind!’ = {1, 5), (3, 4), (6, 8)} also has weightv(M’) = 15.
Note that everperfectmatching, such aMl = {(1,2),(3,4), (5,6), (7,8)},
has weight at mosb (M) = 14. O

As a special case of maximum weight matching problems we introduce the
class oihode matching problemg&et G = (V, E) model the following market
situation: Each € V has a “weight”w; > 0 indicating his importance or
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Figure 4.1

power. The edges i correspond with pairs of potential business partners.
Now assume that, ifand j do business with each other, their common profit
equalsw(i, j) = w; + w;. If we want to maximize the total profit, then again
we have to find a maximum weight matching. In this case we call the problem
a node matching problem.

Definition 4.2 Thenode matching problems the problem of finding a max-
imum weight matching in a grap@ = (V, E) with edge weightingu : E —

R, that can be expressed as the sum of certain positive weights on the inci-
dent nodes: There exists a weight function V — R, on the nodes o6 in

such a way that

w(, j) =w;+w; forall(, j) € E.
O

If no misunderstanding is possible, then we also indicate the node weight
function byw.

Edmonds [1965a] proved that the maximum weight matching problem can
be solved in polynomial time. Before we go into that result, we first restrict
ourselves teardinality matching problems
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A maximum matching a graphG = (V, E) is a matchingVl* of maximum
cardinality, i.e.,

IM*| = max{|M| | M C E is a matching}.

The problem of finding a maximum matching in a graph is calledctreli-
nality matching problemNote that this problem can been seen as the simplest
case of a node matching problem by defining a node Weighltiag% onV.

A minimum node covas a node coveY* C V of minimum cardinality, i.e.,
IV*| = min{|V'| | V' C Vis a node cove}.

The following well-known min-max relation, valid for bipartite graphs, is due
to Konig [1931].

Theorem 4.1 The size of a maximum matching in a bipartite graph=G
(V, E) is equal to the size of a minimum node cover in G. O

Edmonds [1965b] constructed a polynomial time algorithm for solving the
cardinality matching problem. The main idea is to findeaigmenting path

Let M be amatchinginagrap8 = (V, E). ApathP = vgv;... v in Gisan
alternating path(relative toM) if for eachi =1, ...,k — 1 either(vi_1, vj)
or (vj, vi;1) belongs toM. A pathP = vgv; ... v in G is called augmenting
(relative toM), if P is alternating and both nodeganduvy are not covered by
M. So the edgesvg, v1), (v, v3), ..., (vk_1, k) donotbelong toM, while
the edgesvy, vy), (v3, v4), ..., (vk_2, vk_1) belong toM. Note that in this
case the length dP is odd.

For two subset&;, E, C E we let E; A E; denote the sek;\ E; U E;\ E;.

It is straightforward to see that, for a matchiyand alternating pati®,

M A Pis again a matching i. We say thatM A P is the matching obtained
after reversing M along P If P is augmenting, thepM A P| = |M| + 1.
Furthermore, it is not difficult to prove the following lemma.

Lemma 4.1 Let G= (V, E) be a graph and let M M, be matchings in G.
Then each component of the graph=6(V, M; A M,) is either an alternat-
ing path (possibly of length) or an even cycle. O

To check whether a matchirlg is a maximum matching or not, it is sufficient
to know whether there exists an augmenting path.
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Theorem 4.2 Let M be a matching in agraph & (V, E). Then either M is
a maximum matching, or there exists an augmenting path relative to M.

Proof: If M is a maximum matching and is an augmenting path, thevi A
P would be a larger matching, a contradiction.

If M is not a maximum matching, then there exists a matching > |M|.

At least one of the components @ = (V, M; A M,) contains more edges

of M’ than of M. By Lemma 4.1, such a component must be an augmenting
path. O

The running time of the cardinality matching algorithm of Edmonds [1965b]
is bounded byO(|V[*). Over the years this method has been sharpened (for
a survey, see L@asz and Plummer [1986]). Eventually Micali and Vazirani
[1980] showed that the running time can be reduce@ /|| E|).

Theorem 4.3 Given a graph G= (V, E), a maximum matching can be found
in time bounded b@ (|V|z|E|). 0

For our main results, as stated in Section 4.3, we make use dbdhai-
Edmonds decompositiaf a graph. In order to describe this decomposition
we need the following basic concepts.

A (nearjperfect matchings a matching that covers all nodes (exceptone). A
graph is factor-critical if removing any node results in a perfectly matchable
graph.

Let V' C V. We letC = C(V’) denote the set of even componentsfV’
andD = D(V’) the set of odd components &\V’. The subseV’ C V is
called aTutte setif each maximum matchintyl of G decomposes as

M = MU My p U Mp,

where M. is a perfect matching i JC, the union of all even components.
Mp induces a near-perfect matching in all odd componBrdsD and My, p

is a matching that match&& (completely) intd_) D, the union of odd com-
ponents. Note thatl,, p has to match eache V' in a different component
D eD.

Equivalently,V’ is a Tutte-set if and only if the size* of a maximum match-
ing in G equals

C _

CeC DeD
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Tutte sets can be found efficiently. More precisely, the following result, which
has been proven by both Gallai [1963], Gallai [1964] and Edmonds [1965b],
is true.

Theorem 4.4 (Gallai-Edmonds Decompositionfsiven G= (V, E), one can
efficiently construct a unique Tutte setCTV such that

(i) all odd components [ D are factor-critical

(ii) for each D€ D there is some maximum matching that does not com-
pletely cover D.

O

Let G = (V, E) be a graph with node s&tand edge sdE. Supposd C V is

the Tutte set satisfying condition (i) and (ii) of the theorem above. Clearly, a
nodev € Vis a node inJ D if and only if there exists a maximum matching

in G not coveringu.

Remark 4.1 The cardinality matching algorithm of Edmonds [1965b] can be
used to construct the Tutte SBias described in Theorem 4.4. Given a graph
G = (V, E), we compute the sizer of a maximum matching i. We next
compute for ali € V the size of a maximum matching {&\i. If this size is
equal tom*, theni is a node in_J D. Otherwisd is not a node in_J D. Then

the subset oW\ V(| J D) that consists of all nodesc V adjacent to at least
one node in_J D forms the required Tutte sét O

Example 4.2 Let G = (V, E) be the graph as shown in Figure 4.2. 1t is
straightforward to see that the Set= {v;, v,} is the unique Tutte set satisfy-
ing conditions (i) and (i) of Theorem 4.4. We haize= D; U D, U D3 U Dy
andC = C UG, O

We now return to the general maximum weight matching problem.@_et

(V, E) be a complete graph with even node ¥e&ind edge weighting. A

minimum weight perfect matching a perfect matching/* in G that has
minimum weight, i.e.,

w(M*) = min{w(M) | M C Eis a perfect matching.

Edmonds [1965a] obtained the following result.



4.1 Matching theory 69

Figure 4.2. Gallai-Edmonds decomposition of a graph

Theorem 4.5 Let G= (V, E) be a complete graph with even node set V and
edge weightingy : E — R. Then a minimum weight perfect matching in G
can be found in polynomial time. O

This theorem implies that also the maximum weight matching problem can
be solved efficiently. This can be seen as follows. Get (V, E) be a graph
with edge weightinge : E — R. Since edges with negative weights will not
occur in any maximum weight matching, we may without loss of generality
assume thaiw > 0. If G is not already a complete graph, we add edges with
zero weight. If|V| is odd, then we add a nodeto V and edges fronu to

the nodes iV with zero weight. This way we have extend@do a complete
graphG. Finding a maximum weight matching i is now equivalent to
finding a minimum weight perfect matching@with edge weightingo given

by w(e) = —w(e) for all e € G(E).

Corollary 4.1 Let G= (V, E) be a graph with edge weighting : E — R.
Then a maximum weight matching in G can be found in polynomial time.
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A minimum weight maximum matchimg a graphG = (V, E) with edge
weightingw : E — R is a maximum matching1* that has minimum weight,
ie.,

w(M*) = min{w(M) | M C E is a maximum matching.
Also the next result is a direct consequence of Theorem 4.5.

Corollary 4.2 Let G= (V, E) be a graph with edge weighting : E — R.
Then a minimum weight maximum matching in G can be found in polynomial
time.

Proof: If Gis not already a complete graph, then we add edges with a suffi-
cient large weight, saw(E) + 1. If |V| is odd, then we add a nodeto V

and edges from to the nodes iV with weightw (E) + 1. This way we have
extendeds to a complete grap. Then computing a minimum weight max-
imum matching inG is equivalent to computing a minimum weight perfect
matching inG. 0

4.2 Matching games in general

4.2.1 Introduction

Consider again the example of an exchange market consisting of a group of
personsN as described in Section 4.1: Eack N has exactly one good to
offer and can do business with at most one other person. Aipa& N is

only willing to do business with each other, if they obtain a common profit
w(, j) > 0. So an edge betweenand j only exists in casewv(i, j) > 0.
Obviously the total profit will be maximal, if all persons kcooperate and a
maximum weight matching can be constructed. The problem of dividing the
total profit among the persons ki can be modeled as a matching game.

Definition 4.3 A matching gaméN, v) is determined by a grapB = (N, E)
with node seiN and by a rational weight functiom > 0 defined on the edge
setE. The valuev(S) of a coalitionSC N is the value of a maximum weight
matching in the subgraph induced By O

In this definition we assume that is a positive function, since edges with
a negative weight will not occur in any maximum weight matching. It is



4.2 Matching games in general 71

straightforward to see that
v(S) +v(T) <v(SUT) forall STCN,SNT =0.

So a matching game is superadditive, andll) is the maximum total profit
that players inN can obtain. Furthermore(i) = O for all individual players
ieN.

The underlying discrete structure of a matching gahev) is a graphG and

an edge weighting. Let < w > again denote the maximum size of the edge
weights, i.e.< w >=max{ < w(, j) > | (i, j) € E}. Then we may define
<N,v>=|N|<w >.

Example 4.3 Consider the grap® = (N, E) with edge weightingv as shown

in Figure 4.3. The matching gamal(v) obtained from this graph is deter-
mined byN = {1, 2, 3, 4} andv : 2N — R, given by

) i (3)

@ ) @)

Figure 4.3
vl) = 0 vl,2 =2 v1,23 =3 vN) = 7
v2) = 0 wl,3) = 3 v1,24) = 2
v@ =0 vl,49 =1 v(1,3,4) = 5
vd4) = 0 v2,3) =3 v234 =5
v(2,4) =1
v(3,4) =5
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Given a graphG = (N, E) and edge weightingu, a node matching game
arises if a positive weight functiom : N — R, on the nodes oG exists in
such a way that

w(, j) =w;+w; forall(, j) € E.

If w = 1 (or equivalentlyw = 1), then we call the corresponding node match-
ing game aardinality matching game

A matching game associated with a bipartite graph is calledssignment
game Shapley and Shubik [1972] introduced this game and showed that the
core of an assignment game is always nonempty. Assignment games have
been widely studied in the literature (see, e.g., Quint [1991], Granot and Gra-
not [1992]). Solymosi and Raghavan [1994] present an efficient algorithm for
computing the nucleolus of an assignment game.

With respect to a general matching game, Faigle, Kern, Fekete and Hilgrst™
[1998] present an efficient algorithm for computing the nucleon and point out
that the problem of computing the nucleolus remains unsolved. In the next
section we summarize the results known for general matching games.

4.2.2 Solution concepts for matching games

The simplest matching game is a matching gaiMey) determined byG =
K», the complete graph on two nodes. The core of this game is equal to

core(N, v) = {x € R? | x; + X = w(1, 2) andx > 0},

and the nucleolus of, v) is the allocation 3 w(1, 2), w(1, 2)).

During the rest of this chapter we will assume tkatt K,. In contrast to

an assignment game, a general matching game can have an empty core. This
can already be the case for a matching game on three nodes (cf. Example 2.3,
which can be interpreted as a matching game). Below we give some more
examples of (cardinality) matching games with empty core. We have also
computed the nucleolus of these games.

Example 4.4 Let G = (N, E) be the graph with edge weighting =1 as
shown in Figure 4.4.N is split into {t} U N(D;) U N(D,). Consider the
standard procedure for computing the nucleolus (see Section 2.3). The linear
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t
Figure 4.4

program ;) has already a unique optimal solution: the nucleajuN, v)
given by
ifi=t

i(N, =
(N v) if i € N(Dy) UN(Dy)

~Nlw NI

ande; = —3. 0

Example 4.5 Let G = (N, E) be the graph with edge weighting= 1 as
shown in Figure 4.5. We hawd = N(D;) U N(D,) U N(D3). Thene; = —1
and P;(—1) contains all allocations € RN for which

Xi = X; (,JeN(Dy),p=1...,3)
X+X; = 2 (i€ N(Dy,je N(Dy))

Xi = 1 (i€ N(Dy)

X > 0.

The nucleolug)(N, v) is given by

n(N,v) =
n(N,v) =

on N(Dy) U N(Dy)
on N(D3).

TSN o

O

For E' C E we let N(E’) denote the set of nodes covered By If no mis-
understanding is possible, we also use the following shorthand notation: If
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D3

Figure 4.5

e= (i, j) € E, we write x(e) = x({i, j}). More generally, ifM C E is a
matching, we leik(M) := x(N(M)). The following theorem gives an alter-
native characterization of the core of a matching game. It turns out that only
the core constraints for the one-and two-person coalitions are of importance.

Theorem 4.6 Let (N, v) be a matching game obtained from a graph=G
(N, E) with edge weightingv. Then core(Nv) equals the set of allocations
x € RN that are in the polyhedronRiefined by the following constraints:

Pe X(N) = v(N)
x(e) > w(e) forallecE
X >0 foralli € N.

If x € core(N, v), then

(i) x; =0 foralli € N not covered by a maximum weight matching.

(i) x(e) = w(e) for all e € E contained in a maximum weight matching.

Proof: The proof of the first part is straightforward, using the fact that the
above constraints impl(S) > v(S) forall SC N.

Suppose coré{, v) is nonempty, and lex € core(N, v). Let M be a max-
imum weight matching inG. The core constraints imply(N) = v(N) =
w(M), x> 0andx(e) > w(e) forallec M. Then

w(M) = X(N) = X(N\N(M)) + x(M) > x(M) > w(M)
implies that; = 0 for alli ¢ N(M) andx(e) = w(e) for alle € M. O

So, for matching games the number of inequalities defining the core have been
reduced to a polynomial number.
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Corollary 4.3 Checking whether the core of a matching game{)Ns empty
or not can be done in polynomial time. O

By definition, the least core of a matching ganM {)) contains all optimal
solutions of the linear program

(LC) max €
st. xX(S) > v(S)+e (S#0,N)
X(N) = v(N).

Let ¢* denote the optimal value of.C). Also computing an element in the
least core of a matching gamel(v) can be done in polynomial time. In
order to prove this we need the following lemmas. Recall that we assume that
G # Ky, in which case* = Zw(i, ).

Lemma 4.2 Let (N, v) be a matching game. Theri = 0O if core(N, v) is
nonempty, and* < 0if core(N, v) is empty.

Proof: Obviouslye* > 0 if and only if core{N, v) is nonempty. Suppose
e* > 0 andx € RN is an allocation in the least core ofi(v). Let M be a
maximum weight matching. Sincg > 0, X is also a core allocation. By
Theorem 4.6«(e) = w(e) for an edges € M, which contradicts the least core
constraintx(e) > w(e) + € > w(e). O

Lemma 4.3 Let (N, v) be a matching game. Then leastcorefiNC RY.

Proof: If core(N, v) is nonempty, the lemma follows trivially from Theorem
4.6. Suppose cord|, v) is empty, and assume to the contrary thak() is an
optimal solution of LC), andx; < 0 for some& € N. By Lemma 4.2¢; < 0.

Claim: If SC N satisfiex(S) > v(S) + €; with equality, then € S.
Proof: Assume to the contrary thag S.

case (i) SC SuUi C N.
Thenx(SUi) < X(S) = v(S) + €1 < v(SUI) + €; contradicts the feasibility
of x.

case (i) Sc Sui=N.

Thenx(N) = xX(S) + X = v(S) + €1 + X < v(S) < v(N) again contradicts
the feasibility ofx.

Hence the claim is true. But then we may slightly increasend decrease

on N\i uniformly by the same total amount, thereby obtaining a better solu-
tion. This proves the lemma. O
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Due to Lemma 4.3, the linear program@) is equal to P,), the first linear
program that has to be solved in order to compute the nucleolus (see Section
2.3). Lemma 4.3 also implies that the nucleolus is nonempty for all matching
games. LeiM denote the set of matchingg C E. Then both linear programs

can now be stated as

(P)) max €

st. x(M) > w(M)+e (Me M)
X(N) = v(N)
X > 0.

Theorem 4.7 Computing an allocation in the least core of a matching game
(N, v) can be done in polynomial time.

Proof: By Theorem 2.3 it suffices to show that for giveg RN ande € R we
can efficiently check whethex,in(X) > € or not. Since we can formulate the
linear program ILC) as the linear progranP) described above, this comes
down to check whether

X(M) > w(M)+¢ (MeM)

holds. This can be done by solving a maximum weight matching problem on
G = (N, E) with respect to the edge weights

w(i, j) = w(, j) =% —%; ({0, ]) € E).
Hence applying Corollary 4.1 finishes the proof. O

Faigle, Kern, Fekete and Hochsiér [1998] showed that the nucleon of a
matching game can be computed in polynomial time. For a matching game
with a nonempty core this also holds for the nucleolus.

Proposition 4.1 Let (N, v) be a matching game. If core(N) is nonempty,
then the nucleolus of (N)) can be computed in polynomial time.

Proof: We define

(Pf) max e

st. x(e) > w(e)+e (ecE)
X > € (l eN)
X(N) = v(N)
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with optimum values] € R. (In facte] = 0 holds, cf. Lemma 4.2). Next we
identify

Ei:={ec E|eec FixP/(¢)}andN;:={i e N|i e FixP/ ()}
and then solve

(Py) max e

st. x(e) = w(e+e (e€E)
X = Gir (i € Np)
x(e) > w(e)+e (e€E\E)
X > e (i € N\Nyp)
x(N) = v(N)

with optimum values] = ¢, etc. until we obtain a linear progran®{) that
defines a unique solutioxt € RN. Using the fact that the constraints> 0
andx(e) > w(e) for all e € E imply x(S) > v(S) for all SC N, it is clear
thatx* is equal to the nucleolus oN v). O

The above approach fails in case < 0. Whether there exists an efficient
algorithm for computing the nucleolus of a general matching game is not
known. In the next section we restrict ourselves to node matching games. We
show that for this class of matching games the nucleolus can be computed in
polynomial time. This generalizes the result of Kern and Paulusma [2000],
where cardinality matching games are considered. We first give a polyno-
mial description of the least core. Next, we use this description to present an
efficient algorithm for computing the nucleolus.

4.3 Node matching games

Recall that node matching games arise when the edge weigbjsare the
sum of certainpositive weights on the incident nodes. In this section we
consider a node matching gamid,({v) that is obtained from a grapB =

(N, E) with node weightingyv : N — R,. The edge weighting is defined
by w(, j) = wi +w; forall (i, j) € E.

We use the following standard notation: F®C N we let E(S) C E denote
the set of edges joining nodes&fRecall thatN(E’) denotes the set of nodes
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covered by a subsé®’ C E. Furthermore, foiSC N we use the shorthand

notation
w(S) = Z w.
icS

Note thatw(S) > v(S). Recall that we use the same notation for a matching
Mc M,ie.,

wM)=> "wEe) = > (wi+w).

ecM (i,)EM

We assume that C N is the Tutte set satisfying the conditions (i) and (ii)
in Theorem 4.4. The se¥1* denotes the set of maximum weight matchings
in G, and M* denotes the set of maximum matchingsdn EachM € M*
matchesT completely inD. By condition (ii) of Theorem 4.4, give® € D,
there is someM € M* matchingT into D\{D}. We say thatM leaves D
uncovered

We will sometimes identify subsets dF with the corresponding induced sub-
graphs. For example, ife N is a node, we do not hesitate to write D to
indicate thai is a node of the component € D. If x € RN is an allocation,

we consequently write
X(D) = Z X:.

ieD

Each maximum weight matching can be extended to a maximum matching in
the following sense.

Lemma 4.4 LetM € M* be a maximum weight matching. Then there exists
a matching Me M* in such a way that M) C N(M).

Proof: SupposeM € M* is a maximum weight matching not already/ir*.

By definition of the Tutte seT every maximum matching € M* covers
(JC and matche3 completely intd_J D. Now choose a maximum matching
M € M* in such a way that all nodes in each componBng D that are
covered byM*, also are covered bil. That this is possible can be seen as
follows. SupposeM does not cover a nodec | JD that is covered byM.
Consider the maximum alternating p&@hC M U M starting ini and ending

in j. (Such a path exists according to Lemma 4.1.) Siklce M*, j is not
covered byM. Reversing\ alongP results in a matchingyl € M* covering
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N(M)\jUi. For other nodes that are coveredﬁly but no byM, we do the
same. Hence we may assume thacoverscN(M) N JC)U (N(M)NT)H U
(N(M) N D) = N(M). O

If M € M* andM € M* with N(M) C N(M), then obviouslyw(M) =
w(M). SoM* C M* holds if the node weighting is strictly positive.

The following lemma gives a lower bound on the val@\i) for all i €

UD.

Lemma 4.5 For all i € D, v(N\i) > v(N) —w;. If w> 0onD then
v(N\i) > v(N) — w; holds.

Proof: SupposeD € D andi € D. If M* € M* is a maximum weight match-
ing not covering, thenv(N\i) = v(N) > v(N) — w;.

Otherwise assume thatis covered by a matching! € M*. By Lemma
4.4 we may assume thM is a maximum matching. According to Theorem
4.4 there exists a maximum matchiMj € M* not coveringD. SinceD is
factor-critical, we may assume thist’ does not cover.

By Lemma 4.1 there exists a uniqgue maximal alternating path M U M’
starting ini and ending in a nod¢. Since both matchings and M’ cover
TUJC, j must be a node in a componedt € D (possibly equal td).
ReversingM along P results in a matching/l € M* coveringN(M)\i U |.
Hencev(N\i) > w(M) = w(M) — w; + w; = v(N) — w; + w;, which proves
the lemma. O

The next result gives a sufficient condition for the core to be nonempty. If the
node weightingy : N — R, is strictly positive, then this is also a necessary
condition.

Theorem 4.8 If |D| = 1 for all D € D, then core(Nv) is nonempty. If the
node weightingyv : N — R, is strictly positive, then also the reverse state-
ment is true.

Proof: SupposeD| = 1 for all D € D. Delete the componen& e C and all
edges between nodesin In this way a grapl&’ with node setN' =TuU( D

has been constructed. @4 we define the same node weightiagrestricted

to TU(JD). SinceG is bipartite, the corresponding node matching game
(N’, v") has a nonempty core (Shapley and Shubik [1972]).
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Choose an allocatiok e core(N’, v’) in such a way thak; > w; foralli € T.
Such an allocation exists by the following reasoning. Ad&tan extra node
swith weightws = 0 and connec$ to each node iff. This new graph is also
bipartite and the corresponding matching gamél( s, v") has a honempty
core. By Lemma 4.4 a maximum weight matchingirexists that matches all
nodes inT. Then the value of a maximum weight matching has not increased
after adding the extra node Hence a core allocatiafiof the node matching
game(N’ U s, v") (restricted toN’) lies in coréN’, v"). By Theorem 4.6 we
haveXs = 0. ThenX = X + X > w; + ws = wj foralli € T. HenceX € RN
defined by

)"(‘/
)"(‘/

we onJC
X onTulD

is easily seen to be an element in cdte().

Supposew > 0 onD andD € D with |[D| > 3. Lete= (i, j) € E(D). By
Lemma 4.5 we have(N\i) > v(N) — w; andv(N\ j) > v(N) — wj. So if
x € RN were in the core, then

X(N\i) > v(N\i) > v(N) —w; and x(N\ j) > v(N\j) > v(N) — wj.

Together withx(N) = v(N) these inequalities imply + x; < w; + wj, a con-
tradiction with the core constrairte) = x; + X; > w; + w;. Hence corey, v)
must be empty. O

The following result shows that, according to a core allocatianRN, the
amount that is allocated to a node D does not exceed the weight. This
implies thatx; = 0 for a node € | J D with weightw; = 0.

Proposition 4.2 If core(N, v) is nonempty, then for all & core(N, v)
x <w; foralli e JD.

If D € D has siz¢D| > 1, then x = w; holds for all i€ D.

Proof: SupposeD € D andi € D. Let x € RN be a core allocation. By
Lemma 4.5,u(N\i) > v(N) — w;. Thenx = xX(N) — x(N\i) < v(N) —
v(N\I) < w;.

If |D| > 1 then there is a nodge D such that(i, j) is an edge irE. Since

x € core(N, v), X + X; > w; + wj. Since we have just deduced that< w;
andx; < wj, this implies that;, = w; (andx; = wj). O
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4.3.1 The least core of node matching games

Recall that, due to Lemma 4.3, the linear program defining the least core can
be stated as the linear program

(P max €

st. x(M) > wM)+e (Me M)
X(N) = v(N)
X > 0

with optimal valuee; < 0. In the following we assume that coM(v) is
empty Equivalently, by Lemma 4.2, < 0. Furthermore, by Theorem 4.8
there exists at least one componén& D with size|D| > 1.

Example 4.6 Consider the node matching gami, () obtained from the
graphG = (N, E) with node weightingv as indicated in Figure 4.6.

Figure 4.6

Clearly, the sefl = {5} is the Tutte set satisfying conditions (i) and (ii) of
Theorem 4.4. The grap&\T has two odd componentS; with node set
{1, 2, 3} and D, with node set{4}, and one even compone@i with node
set{6, 7}. By Theorem 4.8 coré{, v) is empty.



82 Matching games

The value of a maximum weight matching @is equal tov(N) = 16. Let
(x, €) be afeasible solution faiP,). Thenx; + X, > 6+ ¢, X(N\1) > 12+ ¢
andx(N\2) > 16+ €. Together withx(N) = 16 we obtain the upper bound
€< —2,

— 3

It is easy to check that = (43, £, 1%, 0, 4, 2, 3) is an allocation inP(—3).
Hencee; = —£. In fact, the allocations in leastcoié(v) = Pi(—$) turn out
to be exactly the allocations in the polyhedron determined by the constraints
X1 42]-%
X2
X3
X3+ Xs
Xq + X5
X5 + X
Xe + X7
X(N)

win

IVl

O kR U1l Wwh WHrRw
2]

x
AV

0

By Theorem 4.7 we can efficiently compute an allocation in the least core of
(N, v). Here we aim for more, namely a concise descriptioP@k).

Note that in Example 4.8 — w; = X; — w; < O for all nodesd, j in the same
componentD € D. Also x(e) > w(e) for all edges inE with at least one
end point not in JD. Furthermore, large matchings such as the matching
M ={(1,2), (4,5), (6, 7)} and matchings completely contained_ifiD turn

out to become tight, i.e., the corresponding constraint®jhlfecome tight.
Also for Example 4.4 and Example 4.5 this is true. Generally speaking, this
holds for any node matching game, i.e., we will prove that the least core of
(N, v) can be described as the solution set of the following linear program.

max €
st. X—w = Xj — wj (I,j e D,DeD)
Xi < wj (ieUD)
x(e) > w(e) (ec E\E(UD))
X(N) = v(N)
X > 0

Dl—-1
Z” (X(D) — w(D)).

€
5 Dl
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In this description the exponentially many constraints defining the least core
have been replaced by a polynomially number.

If core(N, v) would be nonempty, this is straightforward to see: By Theorem
4.6 core(N, v) is equal to the polyhedroR,. By Proposition 4.2 we may add
the constraintx < w on | JD, andx = w; for alli € D and D € D with

|D| > 1. So, if core{, v) would be nonempty, then the optimal solutions of
the linear program as defined above describe the (least) coig of.(

However, we have assumed that cdte() is empty, and in the rest of this
section we show that also in this case the linear progriégncan be replaced

by the linear program as described above. As a first step, we introduce a
relaxation @;) of (P,) below, which is easier to analyze and, as we shall
see, defines the same optimum value. To motivate this approach, note that,
as shown in Example 4.6, rather large matchings and matchings completely
contained in_J D are expected to become tight when solvify)(instead of

small ones (single nodes and edges) as in the case of a nonempty core.

Let Mp denote the set of matchindgd C E(| D) that are completely con-
tained in the union of the odd components. We shall study the following
relaxation of @y):

(P)) max e

st. Xx(M) > w(M)+e¢ (Me M*UMp)
X(N) = v(N)
X > 0

with optimal valueé; € R. Obviouslye; < 0. Below we will show that

€1 < 0. Note that we do not explicitly consider maximum weight matchings
in the description of B,). However, by Lemma 4.4 we know that, in case
these matchings do not already belong to the\gétof maximum matchings,
there exists a corresponding matchige M*.

To investigate the structure of optimal solutions &)( we first introduce
some notation. As beford; (¢) denotes the set of € RN such that X, €)is
feasible for @,). If x € P.(¢1) is an optimal solution, we say thit € M* U
Moy is x-tight, if X(M) = w(M) + ¢;. Given a feasible solutior PL(e)
andD € D, let

. X(D)
= |
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denote the average valuexbn D. In the same way we define the average
weight on a componerd € D :

. w(D)
Wwp .= W

Define x € RN by averaging x with respect to the node weighton each
componenD € D, i.e.,

Xi '= Xp — wp + wj (lED,DGD)
and leaving« unchanged off U JC. Note thatx (D) = x(D), and
)_(i—wi:)_(j—wj fOI’a”i,jED.

First we show thak € P;(¢,), if x € P.(¢1) is an optimal solution. In order
to this we need the following series of lemmas.

Lemma 4.6 Let xe P;(¢) for somee < 0. If no x-tight matchings imfVp
exist, there is not optimal.

Proof: Supposex(M) > w(M) + € for all matchingsM € M. If no x-tight
matchings inM* exist either then, obviously, is not optimal. IfM € M*
covers all nodes e | J D with x; > 0, then

X(M) = X(N) = v(N) > v(N) + ¢,

which means thaM is notx-tight. Hence eacl-tight matching inM* does
not cover all nodese (D with x; > 0. Then we may slightly and uniformly
decreasex on the set{i € | JD | x; > 0} and increase it by the same total
amount onT U [ JC. The resultingk has no tight matchings in* U Mp,
which implies that is not optimal. O

Lemma 4.7 If x € Py(e) thenx(M) > w(M) + € forall M € M* U Mp.

Proof: Let x € Py(e). It suffices to show that the constraints above are still
satisfied after averagingwith respect to the node weightingon some com-
ponentD € D. Thus letD € D and letX € RN be obtained by averagingon

D, ie.,

Xi=Xp —wp+w; (i€D).
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SupposeM € M*. Then eitheM coversD or M N D = D\i for somei € D.

In the first cas&x(M) = x(M) and the claim follows. In the second case we
may assume without loss of generality thag D maximizesx; — w; over

D, otherwise we replac®l inside D by some other near-perfect matching
without changingk(M) — w(M). (Recall thatD is factor-critical.) But then
Xi — wj > Xp — wp = X — w; and consequentl{(M) — w(M) > x(M) —
w(M), so the claim follows ag € Pj(e).

Next consideM € Mp and assum®l minimizesX(M) — w(M) over M.
If Xp —wp > 0o0onD,thenM N D = {. HenceX(M) = x(M) and the claim
follows. If xp — wp < 0 on D, thenM N D is without loss of generality a
near-perfect matching i® and we argue as we did fdll € M*. O

It is immediately clegr thak(N) = x(N). We still have to show that > 0
for an allocationx € P;(é1).

Lemma 4.8 If x € P,(¢&;) thenx € P;(&1).

Proof: Let x € Py(¢;). Besidesx(N) = v(N) we have already shown, in
Lemma 4.7, thak(M) > w(M) + &, for all M € M* U Mp. Let wp®,, de-
note the minimum weight in a componebte D, i.e, wd;,, = min{w; | i €
D} (D e D). We will prove that for allD € D

D
Xp =2 Wp — Win-

/

Thenx > 0, and we are finished. Now suppd3éc D andXp < wpr — w2,
or equivalently,

D% < Y (wi — wiin).-

ieD’ ieD’

Note that D’| > 1. Letj € D’ be a node withv; = wD;,. Itis straightforward

min-

to see that we can obtain an allocatioa RN such that

Xi < Wi — Wj (IGD/)
X(D') = x(D")

Xi = X (ie N\D/)
X > 0.

We have choseR in such a way thak; = 0 and¥% — w; < X; — w; for all
i e D'\Jj.
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e Below we show thak is an allocation irif’l(él). Besidesk > 0, obviously
X(N) = v(N). So we are left to check wheth& M) > w(M) + ¢, for all
Me M*UMop.

SupposeM € M*. Then eithefM coversD’ or M N D’ = D'\i for somei €
D’. In the first cas&X(M) = x(M) > w(M) + €;. In the second case we de-
duce thatk(D'\i) — w(D'\i) > X(D'\ j) — w(D'\j) > x(D'\j) — w(D'\ j),
sincex; — w;j < Xj — wj andx; = 0. Becausé is factor-critical, we can re-
place the edges iM coveringD’\i by 1(|D| — 1) edges coverin@®'\ j. This
results in a matchingl’ such that

X(M) —w(M) > x(M") —w(M) > é&.

SupposeM € Mp and assume tha?l minimizesX(M) — w(M) over Mp.
SinceX < w; —wj < wj, MND’is without loss of generality a near-perfect
matching inD’ and we argue as we did féd € M*.

e SinceX(D') = x(D') < Y icp/(wi — wj), there exists a node c D’ for
which X, < wx — wj, and consequentlyy, — wx < Xj — w.

Claim: The nodek € D’ is covered by everg-tight matchingM € M* U
Mop.

Proof: Supposél € M* is X-tight. If M coversD’ then the claim follows.
Otherwise|M N D'| = |D’| — 1. SupposeM N D' = D’\{k}. SinceX —
wy < Xj — wj, we havex(D'\k) — w(D’\k) > X(D'\ j) —w(D’\j). Then a
matchingM’ € M* would exist withN(M’) = N(M)\ j Uk andX(M’) <
w(M’) + €1, contradicting the feasibility of.

SupposeM € My, is X-tight. If [M N D’| = |D’| — 1 then, from the above,
M must covek. OtherwisefM N D’| < |D’| — 1. SupposeéM does not cover
k. SinceX; < w; on D’, we can extend! to a tight matchingv’ in Mp that
coversD’\k, a contradiction.

¢ We now show that we can increageby modifyingX a little, which would
contradict the optimality of,. We first deduce that; < X+ X — w; — wy <
0, wherel € N is chosen in such a way thiat D’ and(i, k) € E.

Suppos&(T U(JC) > 0. Then decreaseon T U JC and increasé by the
same amount in such a way that the resultthis still in P, (¢1). Clearly, X
has no tight matchings iMp. By Lemma 4.6, is not optimal, a contradic-
tion.
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SupposeX(T U JC) = 0. Thenx(|JD) = x(N) —X(TUJC) =x(N) =
v(N) > v(UD) = ¥ pep(w(D) — whyp). SincexX(D') < w(D') — | D'|w?
there exists a componebt € D with (D) > w(D) — |D|w?,.. By Lemma
4.7, we may assume that

% =Xz — wg +w; >0 onD.

Then decreasg on D and increase by the same sufficient small amount.
Again the resulting allocation has no tight matchings\ity,, ande; would
not be optimal.

So we have showed that for &l € D xp > wp — wP. , implying thatx > 0.

min?
Il

Lemma 4.9 ¢; <O.

Proof: Supposex € P(¢;). By Lemma 4.8 we may assume that= X.
If Xp < wp on someD € D, then consider an edgee E(D). We have
81 < X(e) —w(e) =2(Xp — wp) < 0.

Supposep > wp for all D € D. Let M be a maximum weight matching in
M*.If M covers alli € D with w; > 0, thenx' given byx = w; is easily
seen to be a core allocation. This contradicts our assumption that\;ane(
is empty. Hence there exists a nadm someD € D with w; > 0 that is
not covered byM. ThenX; = Xp — wp + w;j > w; > 0, and consequently,
X(M) < X(MUI) < X(N) = v(N). Together withx(M) > v(N) + &, this
impliese; < O. O

Summarizing we conclude théat < 0. If x € |51(€1) is an optimal allocation,

so isX. Furthermore, some matchings.m* U Mp must bex-tight. These
can in principle be found by minimizing(M) — w(M) over M* U Mp.
Minimizing X(M) — w(M) over M* amounts to solving a minimum weight
maximum matching problem (cf. Corollary 4.2). MinimiziggM) — w(M)

over Mp, is even trivial: We simply choose a near-perfect matching in each
componentD € D with Xp < wp (plus an arbitrary matching in all compo-
nents on whichxp = wp). So computing ai-tight M € M* U My for given

X € Py(¢) is easy.

We aim at a more structural characterizationxefght matchings for given
X € P1(€1). Let Dax= Dmax(X) C D be the set of odd components on which
Xp — wp IS maximum (among alb € D).
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Lemma 4.10 No x-tight M € M* covers all D€ D,y If X-tight matchings
in M* exist at all, then for each & Dpa there is some-tight M € M*
leaving D uncovered.

Proof: SupposeM € M* is %-tight and coverd € Dpa,. Let M € M* be
any matching not coverin. (Recall Theorem 4.4). Lé® C M U M be the
unique maximal alternating path startingln(in a nodei uncovered byM)
and ending in, sayD (in a nodej uncovered byM). ReversingM along P
results in a matching! € M* coveringN(M)\i U j € D. SinceD € Dpax
we haveX; — wj = Xp — wp > )_(lj —wp = )_(j — Wi, hence

X(M) — w(M) < X(M) — w(M).

Thus M must bex-tight again, proving the second claim. The first claim
follows by observing that iM would cover allD € Dpax thenD ¢ Dpax(as
it is uncovered byM). But thenXp — wp > Xz — wg andX(M) — w(M) <
(M) — w(M) = &, contradictingk € P,(¢1). 0

Let M, denote the set of all maximum matchingshity.
Lemma 4.11 Let xe P(¢;). Then

(i) x=x

(i) x <won{JD

(iii) Each M € M2 is x-tight.

Proof: Let x € P(¢;). We first prove (i) and (iii) forx and then show that
X=X

(i) x<wonl|JD, orequivalentlyXp < wp forall D € D:
Suppose to the contrary thas > wp > 0 for some odd componebt € Dy,
Thenx; > w; > 0for alli € | Dmax

We first consider the casEU | JC = 0. If Dpax= D, we hadX > wp for
all D € D and hence(N) > v(N), a contradiction. Henc®,.x C D. By
Lemma 4.10 we may decreageslightly and unlformly on_J Dmax and in-
creasex on | J D\ | Dmax resulting in somex € P.(¢;) for which noM €
M* U My is tight. This contradicts the optimality éf.
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Now supposel U | JC # 0. If Dymax= D, we hadxp > wp for all D € D
and hence nd1 € Mp werex-tight. By Lemma 4.6¢; < 0 is not optimal, a
contradiction.

If DmaxC D, we proceed as follows. Chode- 0 sufficiently small and lex’
arise fromx by

. decreasing by% (i€ D, D€ Dnay

. increasingkon T by &’ in total, where(|Dmay — 1)8 < 8 < |Dmaxd

. increasingx uniformly on| D\ | Dmax by |Dma)d — &' in total.

For sufficiently smals > 0 the resultingx’ hasx’(M) > x(M) for eachx-
tight M € My (since none of these meels,,,) andx®(M) > x(M) for all
x-tight M € M* by Lemma 4.10. Hence, agaiti € P;(¢;) has no tight
matchings, contradicting the optimality &f.

(i) EachM e M, is X-tight: First note that for anyl;, M, € M,

X(My) — w(My) = X(M2) — w(Mz) = > (D] — 1)(Xp — wp).

DeD

SinceXp < wp for all D € D, eachM € M7, minimizesx(M) — w(M) over
M. Then the claim follows from Lemma 4.6.

i) x=x

For eachD € D we chose a nodiec D with x; — w; = max{X; —w; | j € D}
and a near-perfect matching coveribgi. Let M € M, be the union of
all these near-perfect matchings. By construction we kai) — w(M) <
X(M) — w(M) with equality if and only ifx = X on [ JD. But sinceM is
x-tight,

X(M) —w(M) < X(M) —w(M) =¢;

would contradictx € P;(&;). O

Lemma 4.12 Let x= X € P(¢1). If x(TUJC) =0, then every Me M* is
x-tight.
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Proof: If TU(JC is empty, them\* = M, and the claim follows by Lemma
4.11(iii). Supposd U JC is nonempty ana(T U|_JC) = 0. Recall that any
M € M* decomposes as

M = Mc U MrpU Mp

with M¢ a perfect matching df JC, Mtp matchingT completely intol D
andMp € M. SinceMp is x-tight (cf. Lemma 4.11(iii)), we have(Mp) =
w(Mp) + €;. Together withx(M) > w(M) + €4, this implies

X(M¢c U M1 p) > w(Me) + w(Mr,p).

Let B C | D be the set of nodes that is joined to the nodeBloy M+ . Then
w(Me) + w(Mr,p) = w(TUJC) + w(B). By Lemma 4.11(ii) x < w; for
all'i € B. Since we assumed thatT U JC) = 0, we have

w(B) +w(TU(_JC) < x(B) < w(B).
Thenw =0onT U JC andx; = w; on B. Hence we deduce that

X(M) = X(Mc) + X(T) + X(B) + X(Mp)
w(B) + w(Mp) + &
= w(M)—i—@l

0

Lemma 4.13 Let x= X € Py(¢;). Then there is some x-tight MA1*. More-
over, if D€ Dnax0r |D| > 1then there is some x-tight M M* not covering
D.

Proof: If X(T U[JC) = 0then, according to Lemma 4.12, evédWyc M* is
x-tight. Since for eaclD € D there is some matchingl € M* not covering
D, we have finished this case.

Assume thal U JC # 0 andx(T U JC) > 0. Suppos&(M) > w(M) +¢€;
for all M € M*. Then we could do as follows: Decrease (somehigwh
T U JC and increase uniformly on | D by the same total (sufficiently
small) amount. The resulting were still in P (¢;) and would contradict
Lemma 4.11(iii).

By Lemma 4.10 this implies that eadh € D is left uncovered by some
x-tight M € M*. We are left to prove a corresponding result e D with
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|D| > 1. Assume thab € D\Dpaand|D| > 1. Thenx < w on D by Lemma
4.11(ii), so everyx-tight M € M3, contains a near-perfect matching Df
Now suppose is covered by every-tight M € M*. Sincex(T U JC) > 0,
we may decreask slightly on T U C and increase uniformly on D by the
same (sufficiently small) total amount. The resultigvould again be in
P.(¢1) and contradict Lemma 4.11(iii). This finishes the proof. O

We call an allocatiox = X € |51(€1) flexibleif the conclusion of Lemma 4.13
holds with respectto alD € D, i.e., if eachD € D is left uncovered by some
x-tight M € M*.

Lemma 4.14 Flexible allocations exist.

Proof: Let x = X € Pi(é1). Supposex is not already flexible. Then there
exists a componerd = {i} € D of size 1 such that evergtight M € M*
coversi. Maximum matchings not coverinigare not tight. In particular, this
implies thatT # () and, by Lemma 4.12x(T U JC) > O.

We may thus increase and decreaseon T U J C by the same total amouéit
until X becomes “flexible” with respect tb = {i}. By Lemma 4.12 we know
that this will happen beforé exceeds the valu&(T U JC). In other words,
we choose > 0 maximal such that the modificatighis still in P;(¢1). Then
X3 (M) = w(M) + &, holds for a matchings € M* that does not covér(and
is not x-tight). Because all matchings ifv* that were alreadg-tight (and
coveri) remain tight, the claim follows by induction. O

We are now ready to determine the structure-tifjht matchings inM* for
flexible x = X € Py(¢1). Supposek € P(¢,) is a given flexible allocation.
Suppose thaty < ... < o (p > 0) are the different value$ — w takes on
(UD and let

D:DOU...UDp

be the corresponding partition &f. HenceX — w = «; on|JD; andD,, =
Dmax-

Proposition 4.3 There exists a partition = ToU ... U T, (with some of the
T; possibly empty) such that M M* is X-tight if and only if M matches each
T, into D;.

Proof: If T = (), the claim is true in the sense that nothing is matchedZnto
and eachM € M* is X-tight. (By Lemma 4.13, somgtight M € M* exists
and sincel = (), all M € M* have the samg-value.)
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In general, recall that-tight matchings inM* are exactly those that minimize
X(M) — w(M) over M*. For givenX, the valuex(M) — w(M) only depends
on how many nodes daf are matched into ead;. (This readily follows from
the decompositioM = M U M1 p U Mp.) In other wordsX(M) — w(M)
only depends on the tot&k — w)-weight of nodes in_J D that are matched
with T. The claim therefore follows from Lemma 4.15 below. O

Lemma 4.15 Consider a bipartite graph G with node classes A and B. Sup-
pose B= ByU...U By is a partition of B and edges incident with Bave
weighte; (o < ... < ap). Assume that the se1* of matchings that com-
pletely match A into B is nonempty and fet’ . be the set of Me M* with
minimum weight. Suppose finally, th&; is “flexible” in the sense that
each be B is left uncovered by some MM .. Then there is a partition
A= AyU...U A, of Asuchthat Me M. ifand only if M matches Anto
Bi(i=0,...,p).

Proof: Let M denote the set of maximum matchings in the subgr@ph
induced byAU By. EachM € M. induces a maximum matching, C M

in M§. This can be seen as follows: Suppddeloes not induce a matching
Mo € M3. Let M be a maximum matching iMg. For all nodes € By that
are covered by but not byM we do as follows. LeP C M U M( be the
unigue maximal alternating path starting in ndide B, uncovered byM and
ending in a node uncovered byM|. ReverseM alongP. Then in the end
this results in a matchiniy!” with w(M’) < w(M), a contradiction. Hence

we must have
(x) Eachb € By is left uncovered by somkl, € Mg,

Supposeary is the maximum size of a matching B,. As G is bipartite,

Theorem 4.1 ensures the existence of a (minimum) node cayer Bj

(A5 C A, Bj C B) of sizemy. Since| AjU Bf| = |M| for a matchingVl € M,

eachM € Mj is incident with all nodes ilA; U B;. Hence, by (*) we con-

clude thatB; = 0. In other words, eacM € M;,,, matchesAj into By. Now

let M denote the set of maximum matchings in the subgi@pimduced by

A\ A{ U By, and continue in the same way. So the claim follows by induction.
O
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We are now prepared to present our main result, a simple alternative descrip-
tion of the least core. Consider the LP

(Iél) max ¢

st. X = X
Xi < wj (ieUD)
x(e) > w(e) (ec E\E(UD))
x(N) = v(N)
X(M) > w(M)+e (Me M)
X > 0.

Note thatx = X is just a shorthand notation for a number of linear equalities
of the typex; — wi = X; — w;. Furthermore, note that for = X the value
X(M) —w(M) is independent of the particular choiceMfe M3,. Hence the
exponentially many constraints fd € M7, reduce to one single inequality.

Again, we Ietlél(e) = {X] (X, €)is feasible fo(lél)} and denote the optimum
value of (P,) by &;.

Theorem 4.9 We have:; = ¢; = él and leastcoréN, v) = Py(€;) = ﬁ’l(él).
Proof:
e We havex; < ¢; by definition.
o ¢, < él: Let X € P;(¢;) be flexible with corresponding partitiod® =
DoU...UDpandT = ToU... U T,. Definex € RN by

Wi ifielJC

X = X; ifie D
Wi — O] if i GTJ' O<j<p).

We show thatk € P.(&1) (proving thatél > ¢1). The only non-trivial con-
straints to check arg(N) = v(N) andX(e) > w(e) forec E\E(D). All
other constraints directly follow from Lemma 4.11.

Let M € M* be x-tight and decompose it as
M = M; U Mr.pUMp

as usual. Sincdlp € My, is alsox-tight by Lemma 4.11, we conclude that
X(MC U MT,D) = w(M¢) + U)(MT’D) = X(Mc U MT,D) by definition of X.
HencexX(N) = X(N) = v(N).
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Secondly, let us considerc E\E(D). If ec E(TU|JC) then f((e) >
w(e) by definition ofX. (Recall thatr; = % — w; <O foralli € JDj.) Thus
we are left with edges betwednand|  D. Suppos&(e) < w(e) for such
an edge joining, sayp € D; with k € T;. Then>:<(e) < w(e) impliesa; < «aj.
Sincex is flexible, there exists aktight matchingM € M* not coveringD.
SinceD is factor-critical (an&k — w is constant orD), we may assume th
does not match the end point@in D. SinceM is X-tight, k € T; is matched
into D; by some edgd € M (cf. Proposition 4.3). But theM’ = M\fUe
hasx(M") — w(M’) = (M) — w(M) + o — aj < X(M) —w(M) =€, a
contradiction.

o & <er  We show that in generd®;(e) C Pi(e). Supposex € Pi(e).
Thenx(M) > w(M) + € for all M € M3,. Sincex < w on|JD, this also
impliesx(M) > w(M) + ¢ for all M € Mp. (Use an augmenting path argu-
ment.) Sincex(e) > w(e) for all e € E\E( D), we further conclude that
X(M) > w(M) +eforall M € M.

e Finally, we verify thatP;(¢;) = '51(21); We have just proved that>”
holds. Conversely let € Pi(¢1). Thenx € Py(¢1) and by Lemma 4.1% satis-

fies all constraints of?l(él) except possiblx(e) > w(e) forec E\E( D).
Thus lete € E\E(| D). Pick M € M3, not covering the end point @& in
D, so thatM U e is a matching again. Then, singec P;(¢;), we have
x(MUe) > w(M)+ w(e) + €, and sinceM € M3, is x-tight, we have
X(M) = w(M) + &;. Sincee; = €;, the claim follows. O

As mentioned before, the [east core of a node matching game can also be
described by the polyhedrd® (&;) = P4 (0) if the core is nonempty.

For general matching games it is not possible to characterize the least core by

a polyhedron of the formﬁl(él). The following example shows that already
for a node matching game wittegativenode weights this is not possible.

Example 4.7 Consider the matching gamél(v) obtained from a grapks
with edge weightingw as shown in Figure 4.7. This edge weighting can
be obtained from only one node weighting, namelgiven by w; = w, =
—1, w3 = 2 andw4 = ws = 3. Sow; andw; are strictly negative.

The setT = {3} is the Tutte set satisfying conditions (i) and (ii) of Theorem
4.4. Both odd components @\T, D; = {1} and D, = {2}, contain only
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Figure 4.7

one node. However, corl( v) is empty and it is immediately clear that any
allocationx in the least core has(e) < 1 for at least one edgec E. O

4.3.2 The nucleolus of node matching games

Recall from Section 2.3 that the nucleolus can be computed by solving the
following sequence of linear programs:

(P) max €
st. xX(S > v(S+e (S¢{0,N})
X(N) = v(N)

with optimum values,

(P;) max e
s.t. X € Piu(er)
X(S) > v(S)+e (S¢ FixPuer))

with optimum values,, etc. until the nucleolug(N, v) is finally determined
as the unique solutiox’, ¢* = ¢, of

(P) max €
S.t. X € Pr—l(erfl)
XS > v(S+e (S¢gFixP_i(e-1)).
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By Theorem 4.9 P,) is equivalent toP;) in the sense that they define the
same set of optimal solutions. As we shall see, similar equivalent formulations
can be found for®), k> 2. Define recursively

(P max e

s.t. X € Iék_l(ék_l)
x@ < we +ea—e (ecEWD) ed FixPei(éa))
x@€ > we) —ete (ecE\E(UD), ed FixPei(d))
X > —e1te (i eN,i¢FixPe (1)),

As before, Ieték denote the optimum value ot?’() and definelék(e) in the
obvious way.

Theorem 4;10 We haveey = ék and R(ex) = ng(ék) fork=1...,r. In
particular, |51(§1) S5...0P = {x*} defines the nucleolugN, v).

Proof: For k = 1 the claim is equivalent to Theorem 4.9. We proceed by
induction onk. Assume that,_1 = ék,l andP_1(ex_1) = ﬁ’k,l(ék,l). The
induction step amounts to show the following two things.

() Pu(e) C Pule) (implying thaté > ey :

Let X € Pc«(¢). Thenx € Pi(€;) = ﬁ’l(él), so x satisfiesx > 0, X, = Xp —
wp + w; < wj foralli e D, D € D, andx(M) = w(M) +¢; forall M € M5,.

We first considee € E\ E(| D) and show thak(e) > w(e) — €; + € unless

ec FixP,_ 1(§k 1) = FiXxP_1(ex—1). ChooseM € M, such thatM U eis a
matching. (Existence follows from the fact that edzle D is factor-critical.)

SlnceM is fixed by Pl(el) = Pi(eq), itis flxed by Pk 1(ek 1). Hencee €
Fix Pk,l(ek,}) if and only if M U e € Fix Pk,l(ek,l). Since we assume
thate ¢ Fix P_1(éx_1), we haveM U e ¢ Fix Pe_1(ex_1) and thusx € Pc(e)
impliesx(MUe) > w(M U e) + €. Together withx(M) = w(M) + €; this
yieldsx(e) > w(e) — €1 + €.

In the same way we can show that> —¢; + ¢ foranode ¢ Fix F%k_l(ék_l).
Next considee € E(| JD), saye € E(D) for D € D. We show thak(e) <
w(e) + €; — € unlesse is already fixed byf’k,l(ék,l) = P 1(ek_1). Since
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Xi —wj = X; — w;j for all i, j € D, we conclude thak(e) — w(e) is inde-
pendent of the particular choice efe E(D). Choose anM € M, and as-
sume without loss of generality thae M N E(D) is not fixed byPy_1(ex_1).
Sincex(M) is fixed (tow (M) + €;), we conclude thaM\ e ¢ Fix Pc_1(ex_1).
Hencex € Py(e) implies x(M\e) > w(M\e) + €. Together withx(M) =
w(M) + €1 we getx(e) < w(e) + €1 — €.

(i) Pu(e) C Pe(e) (implying thate, > &):

Letx € Py(e). Again this impliesx € P1(é1), S0X> 0, % = Xp — wp + wj <
w; foralli e D, D € Dandx(Mp) = w(Mp) +€; forall Mp € M5,.

We are to show that(S) > v(S) + e for SC N not yet fixed byPy_1(ex_1) =
Isk_l(ék_l). Sincex > 0, we may only consideS = N(M) for M € M.
Furthermore, since(e) > w(e) on E\E( D), we may restrict ourselves
to M C E(UD). Finally, sincex, = xp — wp + w;j foralli € D, D € D,
X(M) — w(M) only depends ofM N D| for eachD € D. So we may without
loss of generality assume thist C My for someMp € M3, Assume that
M is not fixed byP,_1(ex_1). SinceMyp is fixed by P«_1(ex_1), we conclude
that Mp\ M is not fixed byPy_1(ex_1). So at least some € Mp\M is not

fixed by P_1(ex_1). Hencex € Py(e) implies x(e) < w(e) + ¢ — e. All
other edgesf € Mp\M satisfy x(f) < w(f) (asx < w on|JD). Hence
X(Mp) = w(Mp) + €, impliesx(M) > w(M) + € as required. O

Clearly, the number of constraints in each quear prog(&y) is bounded by
a polynomial in|N|. The size of the parameteé¢g (1=1,...,r) is bounded
by a polynomial in< N, v > (cf. Remark 2.1). Then we can conclude that

Corollary 4.4 The nucleolus of a node matching game ¢INcan be com-
puted in polynomial time. O

We end this section by giving an explicit formula for the nucleolus in case
the graph N, E) with node weightingw satisfies some extra conditions. First
consider the following observation.

Proposition 4.4 Let i, ] be two nodes in a component ®D that are not
connected. Let (\Nv') be the node matching game obtained from ¢Nby
adding the edgéi, j) to G. Them (N, v') = n(N, v).

Proof: The proof is straightforward, noting the fact that for all allocations
X € Pi(e) = Pi(é)
X« —wx =X —w, forallk,| € D.
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So addipg the edge, (j) does not yield any new equations in the linear pro-
grams(Py) (k=1,...,r). 0

Now supposé& U | JC is empty. Let
D=&U...US§

be the partition ofD such that all componentS € D with equal size|D|
are in the same subcollectidh, and|D| < |D’| for D € §;, D’ € S and
1<i<j<l.

We say that a node weighting symmetridf we can order the nodes in any
two component®D, D’ € D with |D| = |D'| asiy, ... ,ijpjandji, ..., jp
such that

Below we give an expression for the nucleolus in casel JC is empty and
w IS symmetric.

Theorem 4.11Let TU | JC be empty and letv : N — R, be symmetric.
Then the nucleolus of (N) is equal to the allocationxc RN given by

wi—wgm ifiEUS]_U...UUSk,]_
X = Wi — o ifi €Sk
w;j ifiEUSk+1U...UUS|,

wherel < k < | is taken as small as possible in such a way that a number
a > 0 exists with the property that'xc RN is of the form above,*x> 0 and
x*(N) = v(N).

Proof: First suppose cor®, v) is nonempty. Le € core(N, v). By Theo-
rem4.6x =0ifi € Nis anisolated node. By Proposition 2= w; holds
for all D € D with |D| > 1. So corel\, v) contains exactly one allocation,
which must be the nucleolus. Choase- 0. If a componenD < S; has size
|D| > 1then letk = 1. Otherwise lek = 2.

Suppose coréy, v) is empty. As a first step in computing the nucleolus we

have to determine the optimal valagof (P;) = (P1). Note that maximizing
€ comes down to maximizing

Z(|D| — DXp.

DeD
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So we maximizexp on component® with |D| as large as possible in such a

way that the constraints @P;): X(N) =v(N), X=X, Xp < wp (D € D)
andx > 0, are met. Then tis clear that in this wahas to be chosen as small
as possible such that the resulting vectohas

Xi>k = wi—wr'?ﬂn ifiEUS]_U...UUSk,]_
Xi>k = Wi ifiEUSk+1U...UUS|,

andx*((JSk) = x*(N) — x*(N\ U Sk) such that® — w; = xj — w; for all
i,je D,DeSandx (US) > Y pes (w(D) — [Dlwpy,) (thenx > 0).
Also the nucleolus is of the same form s

By Proposition 4.4 we may without loss of generality assume that BaetD

is a complete graph. SuppoBe D’ € Sy. Order the nodes dD asiy, ... , ijp,
and the nodes oD’ as s, ..., jjp; such that
wi, =wj, (r=1,...,|D).

Recall that the nucleolus satisfi8ym Define a permutation : N — N as
follows:

jr ifk=i, (r=1,...,|D|)
(k) = ip ifk=j (r=1,...,|D])
k otherwise

Thenv™(S) = v(S) for all SC N. If we want the nucleolus to be equalxo
then, according t&ym x* must be chosen such thgt= x; for 1 <r <|D|.
This implies that for all € | J Sk X" = wj — « for some 0< o < w. O

4.3.3 Cardinality matching games

As mentioned before, cardinality matching games are a subclass of the class
of node weight matching games with node weighting equal to a half for all
nodes.

Below we assume that\ v) is a cardinality matching game defined by a
graph (N, E). Again T C N is the Tutte set satisfying the conditions (i) and
(ii) in Theorem 4.4. Sincev = 1 > 0, Theorem 4.8 reduces to the following
simple observation (for a characterization, see also Deng, Ibaraki and Nag-
amochi [1999]).



100 Matching games

Corollary 4.5 The cardinality matching gameéN, v) has nonempty core if
and only if|[D| = 1forall D € D. O

Because all nodeise N have the same positive weight = 1, the setM*
coincides with the setM*. Furthermorewp = % for all D € D. Then the

linear program( P;) describing the least core can be written as

(P)) max e

s.t. X = Xp ieD,DeD)
x < 3 (ieUD)
Xe > 1 (ee E\E(UD))
X(N) = v(N)
X(M) > |[M|+e (MeMj)
X >0,

wherev(N) = | JC|+|T|+ X pep 3(/D| — 1). This way we have obtained
the characterization of the least core as presented in Kern and Paulusma [2000].
Becausey = % is symmetric, we can apply Theorem 4.11 (cf. Example 4.5).

Corollary 4.6 If T U JC is empty, then the nucleolus of (I is equal to
the allocation x € RN given by

0 ifiGUS]_U...UUSk,]_

2
1 ifi € JS1U...uUS,

wherel < k < | is taken as small as possible in such a way that a number
a > 0 exists with the property that'xc RN is of the form above,*x> 0 and
X*(N) = v(N). O



Chapter 5

Competition games

We consider a class of games related to sports competitions, in which various
teams play matches against each other in pairs according to a previously de-
termined schedule. At some stage of the competition a team may try to bribe
some other teams in order to win the competition. Those other teams form the
player set in the competition game introduced in Section 5.1. The difficulty
here is deciding whether bribing yields the desired result or not. Therefore, in
Section 5.2 we first try to solve the problem whether it is possible at all that at
some stage of a competition a certain team can end up with the highest final
score. The computational complexity of this problem turns out to depend on
the way scores are allocated according to the outcome of a match. We deter-
mine the complexity for all possible score allocation rules. In Section 5.3 we
return to our competition game and give an algorithm to compute the value of
a coalition.

5.1 Introduction

Consider a sports competition like a national soccer league, in which all par-
ticipating teams play against each other in pairs (matches) according to a pre-
fixed schedule. Initially all teams have total score zero. When a team patrtic-
ipates in a match, its total score is increasedrby R if it loses the match,

by B € R if the match ends in a draw, and bye R if it wins the match. We
always assume that< g8 < y and call the tripled, g, y) the rule (score al-
location rule) of the competition. In case of a soccer competition, the former
FIFA rule was(«, 8, v) = (0, 1, 2), but this has been changed into the new

101
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rule («, B, v) = (0, 1, 3). Other sports like chess or draughts still use the rule
(o, B, ¥) = (0, 1, 2), while stratego, also a strategic board game, has as score
allocation rule(e, B8, y) = (0, 1, 6).

At some stage of the competition a team may ask whether it still has a (theo-
retical) chance of “winning” the competition, i.e, ending up with the highest
final total score. If this is possible it may try to bribe some other participating
teams. Here we assume that both teams have to be involved if the end result
of a match must be set to a draw and that in case of a win/loss match only the
losing team has to be bribed.

We use the following notationd\ denotes the (finitedet of teamgparticipat-

ing in the competition. The team in this set that wants to bribe its opponents
is denoted byty. At a certain stage of the competition the position of each
team in the ranking is determined by tberrent score vector s RN, where

s is the current score of teaie N . The set of remaining matches is denoted
by M. It is possible that two matches, andm, in M have the same pair of
teams(i, j) playing against each other. Thtate of a competitiors given by
atriple(N, s, M).

Definition 5.1 Givenarule &, 8, y) and a state of a competitiohl(s, M), a
competition gaméN, v) consists of a sell = N\t, and characteristic func-
tionv: 2V — R, that is of the form

(S = v* if tog wins the competition after bribing
v o 0 otherwise

wherev* > 0 is called thébribe of the competition. O

Clearly, a valuey(S) does not only depend on the state of the competition but
also on its rule. A coalitiorSis called influentialif v(S) = v*. In that case
v(S) can be interpreted as the price that is agreed by taaihd coalitionS

for cheating the competition. If bribin§ does not guarantdg to win, then

to has no interest in coalitioB andv(S) = 0. If another influential coalition

is cheaper, thety would not do business witB. Therefore, all prices are set
egual to the same amouwit.

Example 5.1 Consider some sports competition with rd@ 1, 2) and state
(N, s, M) given by the tables below.
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| teams| scores| remaining
to 10 matches

t 9 to—t,

t 6 to — ts

ts 3 ts — to

t4 2 L —1t,

t, —t1

Then a competition gameN, v) is determined byN = {t;, t,, t3, t4} andwv :
2N — R, given by

. v* iftye Sortz € S
v(S = { 0 otherwise

0

Since we would have a trivial gameutN) = 0, we only consider competition
games N, v) with v(N) = v* > 0. In those competitions teaty still has

a chance to achieve the highest final score. Then the question arises how
difficult it is to check whether this condition holds or not. In the next section
we solve this problem.

5.2 The sports competition problem

5.2.1 The model

In this section we determine the computational complexity of the problem

"Given a competition with state, s, M) and rule ¢, B, y) has teamd still
a chance to win the competition?”

To analyze this we may without loss of generality assumetghains all its
remaining matches, resulting in a final total sc&éor to. The current score
s of a teamt; # to only has to be adjusted, if had to play against and
a # 0. As we shall see later on, we may assume 0. So we still denote
the (possibly adjusted) scores of the other teams byhe problem is now
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whether the teamg # ty can finish the remaining matches in such a way
that each; collects at most; := & — s additional score points. (We permit
the situation thaty shares the first place in the final ranking with some other
teams.)

This can be modeled by a multigragh= (V, E), whose nodes correspond

to teamg; # ty and edges are in 1-1 correspondence with remaining matches.
Each node € V has capacity; € R, as defined above. We represent the
outcome of a matcle = (i, j) by directing the edge from the winner to the
loser (and leaving the edge undirected in case of a draw). This way we obtain
a partially oriented graphi.e., a graph with an edge set that contains both
directed and undirected edges.

Because it will turn out that the computational complexity of our sports com-
petition problem (SC) depends on the rue 8, ) of the competition, we
subdivide our problem into the classes 8, y).

Definition 5.2 SPORTS COMPETITION (S& 8, y))
Instance A multigraphG = (V, E) and node capacitiasc R".
Question CanG be partially oriented such that for each nodeV:
ad= (i) + B3 +yst(i) <c ? (5.1)

Here, as usual§™ and §~ denote the outdegree and indegree of a node,
whereass® denotes the number of incident unoriented edges. A partial ori-
entation ofG satisfying the capacity constraints (5.1) is callesbéutionof
the instance@, c). O

Below we give an example of an instance of SQ(®).

Example 5.2 Consider some sports competition with rgle 1, 2) and state
(N, s, M) given by the tables below.

| teams| scores| remaining
to 8 matches
t1 7 to—t>
to 7 t,—t
t3 5 th,—t
t4 3 t, —t3
ts— 1,
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If we assume that, wins its remaining match, — t,, then the final score for
to is § = 10 and the capacity vectaerc R* is given byc = (3, 3,5, 7). The
corresponding instance of SC(0,1,2) is the (unoriented) g@p¥ith node
capacity vectoc (cf. Figure 5.1). Figure 5.2 shows a solution &, €). Sot;

t, ./\. t,
B >~ 0

t, t,
@ —@ (5
Figure 5.1

t, ./\. t,
(I A )

t, t,
MN®— @ (5
Figure 5.2

beatst, and vice versa. Furthermorg,wins its remaining match againtst
and the match betwedgandt, ends in a draw. This results in the final table

| teams| scores|

to 10
ts 9
to 9
t3 8
ta 4

Hence at the given stage of the competition it is still possible for taim
end up with the highest final total score. O
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In the literature a simplified version of the sports competition problem (disal-
lowing draws) is known. In that case the problem reduces to a flow problem,
cf. Cook, Cunningham, Pulleyblank and Schrijver [1998] or the section be-
low. As we shall see, however, the question becomes more interesting if draws
may occur. Our main result, which has been proved independently by Bern-
holt, Glilich, Hofmeister and Schmitt [1999], implies that in case: 8 < y

the problem is polynomially solvable if and onlydf+ y = 28 (assuming

P # N'P). This means that for games like draughts and chess the problem is
polynomially solvable.

A lot of sports competitions, such as the FIFA soccer competitions, have the
property that each participating team has to play the same number of matches
against every other team. We call this type of competitiaciessed We

can split a class S@( g, y) into a subclass of closed competitions with rule
(o, B, y) and a subclass obpen competitionsvhere the property mentioned
above does not hold (e.g., large one- or two-day open tournaments). A cou-
ple of years ago the FIFA exchanged the rulel(®@) for the current rule
(0,1, 3). Therefore we are especially interested in the computational com-
plexity of SC restricted to closed competitions. We show that the complexity
does not change under this restriction. This implies that for soccer competi-
tions, by changing the score allocation rule into the (dalgs, y) = (0, 1, 3),

the problem has becom&P-complete. Also for stratego competitions the
problem is\P-complete.

We end our introduction with the following simple observation. Given an
instance G, c¢) of SC(, B, y), we can derive an equivalent instan€ ¢') of
SC(Q B — «a, y — a) by settingc ;= ¢i — ad(i). (Here,s refers to the degree
in G.) So with respect to computational complexity of &C§, ) we may
always assume thak (3, y) is normalizedin the sensethat =0< g < y.

5.2.2 Complexity results

Our main result (cf. Kern and Paulusma [2001]) completely determines the
computational complexity of the sports competition problem. In cases where
SC(, B, ) turns out to be\NP-complete we prove this by reduction from
3-dimensional matching. This is a well-knowniP-complete problem (cf.
Garey and Johnson [1979]).
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3-DIMENSIONAL MATCHING (3DM)

Instance three disjoint set, Y, W with the same number of elememsnd
asubseRC X x Y x W.

Question DoesR contain a (3-dimensional) matching.e., is there a subset
of triplesR C Rsuch thatR covers each element ofU Y U W exactly once?

(In Bernholt, Gilich, Hofmeister and Schmitt [1999YP-completeness is
proved by a reduction from th&P-complete problem 3-SATISFIABILITY,
see Garey and Johnson [1979].)

Theorem 5.1 SCg, B, y) is polynomially solvable in each of the following
three cases:

() a=8
(i) p=vy
(i) o+ 7y =28

In all other cases the problem j§"P-complete.

Proof: First recall that we may assume that g, y) is normalized, s = O.
(Note that normalization does not affect cases (i)-(ilDgse (i)is then trivial.
Indeed, an instancé&x c) has a solution if and only i > 0. (Leave all edges
unoriented.)

In all other cases we havg > 0. By scaling we may assume théat= 1.
(Divide B, y as well asc by B.)

Case (ii) B = y = 1 (corresponding with the exclusion of draws).

Consider an instance given &= (V, E) andc € RV. Construct a directed
bipartite graph with node sed¢ and E and arcs linking each e V to all
edges inE incident withi in G. Then add an additional sourseand sink

t as indicated in Figure 5.3. The arcs fra1o V all get lower capacity 0

and upper capacityc;| (i € V). The arcs fromV to E get lower capacity

0 and upper capacity 1. The arcs frdinto t get lower capacity and upper
capacity 1. The resulting network has a feasibteflow x € RIVI+3El if and

only if our instance G, c) has a solution. Indeed, as all capacities are integral,
a feasible flow may also be assumed to be integral (cf. Theorem 1.4). Given
an integral feasible flow we can interpret an atci( j)) from V to E that
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Figure 5.3

carries 1 unit of flow as winning the matche = (i, j) and conversely (cf.
also Cook, Cunningham, Pulleyblank and Schrijver [1998]).

Case (iii) B =1, y = 2 (ancient FIFA rule).

This can be solved similarly. In the network of Figure 5.3 we simply redefine
the upper capacities of all arcs frovhto E to be 2. The lower and upper
capacities of arcs frork to t are also set to 2. Again, feasible integral flows
are in 1-1 correspondence with solutions of our instart&ec). Each node

e € E in our network has two incoming arcs that carry a total flow of 2 units,
distributed as 2 : 0 or 1 : 1, corresponding to a win/loss match or a draw.

To prove the last part of the theorem we make a distinction between the case
“B=1ly>2"and“B=1,1< y < 2". Since we can guess an outcome of
the remaining matches and compute the final scores, in both casesfSe)

is a member ofVP.

Case (iv)p=1y > 2.

We prove N P-completeness by reduction from 3DM. SuppoXe= |Y| =

W] =gandRC X x Y x Wis given. We are to determine whethrcon-
tains a matchindg?r C R. Assume without loss of generality that each element
ze XUYUW actually occurs in some tripfec R. We writez € r to indicate
thatzoccurs inr € R.
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GivenRC X x Y x W, we construct a grap8 = (V, E) as follows. We first
make one copy of each elemert XU Y U W for each occurrence dfin R,

i.e., we define

= {(x,r)|xeX;reRxer}

= {(y,n)|yeY,reRyer}
= {(w,rn]jweWreRwer}.

E| <X
Il

Construct a grapls = (V, E) with node set = XUYUWUXUYUWU R
and edges as defined by the incidence relations in a straightforward way, i.e.,

{x (xn) [ (xr) € X}

{(, (y.r) [ (y.1) €Y}

{(w, (w,r)) | (w,r) € W}

{(r, x,r) | (xr)e 2(}

{@ () [ (y,r) €Y}

{(r, (w,r)) | (w,r) € W} (cf. Figure 5.4 below)

E

cccccl

Next define node capacitiesc RV as follows:

Figure 5.4
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c =1 onXuUY
c = 14y onXuY
c = max{y,3} onR
c =1 onW
c = y6—1+1 onW.

(Again, § refers to the degree function Gf.)

We claim that this instanceé3( c) has a solution if and only iR contains a
matching.

“«<" SupposeR C Ris a matching. Define a corresponding partial ori-
entation ofG as follows. For eaclw € W choose the unique € R with

(w, ') € W. We leave the edgéw, (w, r')) unoriented and orient all other
edges fromw to W. This way the capacity constraintsofare met. For each
r'=(x, Yy, w) € R we orient the edgé&’, (w, r’")) fromr’ towards(w, r’) and
the edgesr’, (x,r")) and(r’, (y,r")) from X respectivelyY towardsr’. All
edges incident with € R\ R remain unoriented. This way we ensure that the
capacity constraints ow and R are respected. Finally, orient all edges be-
tweenX and X from X towardsX except those that correspond to an element
in R (these remain unoriented). This way the capacity constraintx famd

X are met. We orient edges betweérandY in the same way. This partial
orientation gives a solution of the instanc €).

"=" Conversely, suppose we are given a partial orientatio® oéspecting
the capacity constraints. The latter imply that foe X we haves—(x) >
3(x) — 1 ands™(x) = 0. We may assume without loss of generality that ac-
tually = (x) = 8(x) — 1. (Otherwise, i.e., iB~(x) = 8(x), pick an arbitrary
edge incident withx and make it unoriented. The modified orientation will
still respect all capacity constraints.) A similar argument holds for elements
y € Y. Nodes inX have degree 2. In view of their capacity bound ¥, we
may assume without loss of generality that eg@xlr) € X hass® = 1 and

5t = 1. (Otherwise, again modify the solution without violating the capacity
constraints.) As eackie X hass~(x) = §(x) — 1 ands®(x) = 1, we conclude
that

e There are exactlyX| arcs directed fronX to R. Moreover, if((x,r),r) is
directed towards and((X, r’), r") is directed towards', thenx # X'.

The same holds for the directed arcs frofno R.
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Arguing similarly for nodes i'W, we find that eachw € W has without loss

of generalitys* (w) = §(w) — 1 ands®(w) = 1. (Otherwise modify the ori-
entation such thab actually uses its full capacity.) Nodes\M have degree

2 and capacity bound 1. Then we may without loss of generality assume that
these nodes ha = 1 ands~ = 1. The above implies that

e There are exactlyW| arcs directed fronR towardsW. Moreover, if the
edge(r, (w, r)) is directed fronr towards(w, r) and(r’, (w’,r’)) is directed
fromr’ towards(w’, r’), thenw # w'.

Finally, the capacity constraints d&imply that a node € Rcan haves™ > 1

only if §~ > 2. From this and the above observations, it is straightforward to
check that

R={reR|§(r)=1}
actually is a matching.
Case (V)p=1l<y <2

Again, we prove\ P-completeness by reduction from 3DM. In the grdph
of Figure 5.4 we replace the node capacites RV by node capacitie§ as
follows:

& = p(6—1)+1 onXUY
¢ =1 onXuyY
¢ = maq2y,3} onR
¢ = 1+vy onW
c =1 onW.

Analogously to Case (iv) one can prove that the insta@€) has a solution
if and only if R contains a matching. O

Theorem 5.1 is related to the class of all possible sports competitions. Re-
call that this class contains both closed competitions and open competitions.
Because a lot of sports competitions such as the FIFA soccer competitions
are closed, we want to determine the computational complexity of our sports
competition problem restricted to this kind of competition as well. Obviously
for score allocation rules, for which the general sports competition can be
solved in polynomial time, the problem for closed competitions can be solved
efficiently. The following theorem shows that also for the other rules the com-
putational complexity does not change. We call the number of times that each
team plays against every other team tinger p of the competition.
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Theorem 5.2 Consider a class of closed competitions with fixed rules( y)
and fixed ordep. Then the problem of determining whether at a given stage
a certain team can win the competition\§P-complete if

a<pB<yanda+y#28.

Proof: For the rule &, 8, y) we again assume = 0 andg = 1. If y > 2 then

we only have to show that for the instane®, €), as defined in Case (iv) of

the proof of Theorem 5.1, there exists a closed competition of graéth a

state (N, s, M) such that G, ¢) is obtained from this state. If £ y < 2 we

have to find an appropriate competition for instanGec) of Case (v) in the

proof of Theorem 5.1. Because such a closed competition can be constructed
in the same way we only prove the case 2.

Hence lety > 2 and consider (first) the cage= 1.

In Case (iv) of the proof of Theorem 5.1 we have a gré&pk- (V, E) with
node set = XUYUWU XUYUWU Rand edges as defined in Figure 5.4.
Furthermore, the node capacities RV are given by

c =1 onXuUY
c = 1+y onXuY
c = maqy,3} onR
c =1 onW
c = y6—1)+1 onW.

We construct a competition that contains (besides tgauihe teams corre-
sponding withV and, in addition, the following teams:

. forall x e X asetH(x) of §(x) — 1 teams;
. forally € Y asetH(y) of §(y) — 1 teams;
. for all w € W a setH (w) of one team;

. forallr € Ra setH(r) of two teams.

Let H; denote the collection of all teams as defined above ,i.e.,

Hi= | JHoo U JHy U | H@) u| JH®).

xeX yeyY weEW rer
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BesidesH;, we add a set of teamd, of size|H,| sufficiently large (as ex-
plained later). Then the set of teams in this competition is

N=VU H, U H2U{t0}.

The total set of matches between pairs of teami imas sizel|N|(|N| — 1).

We want the set of remaining matchikto correspond exactly with the set
of edgeskE and a current score vectsiin such a way that every teaie V
may collect at most; additional score points. For this purpose we define the
following outcomes of matches not

. Teamty wins all its matches against teamsHi, its matches against teams
in V all end in a draw, ant} loses all its matches against the teamslin

. Matches between teams Yhthat do not correspond with an edgekrend
in a draw.

. Every teami €¢ X U Y U W wins all its matches against teams kty, its
matches against teamstifYi) all end in a draw, andloses all matches against
teams inH,\ H (i).

. Every teami € W wins |H,| — §(i) + 1 matches against teams Hy, all
its other matches against teamsHa end in a draw, and loses all matches
against teams ;.

. Every teami € X U Y wins |H,| — 1 matches against teams kp, its re-
maining match inH, ends in a draw, andloses all matches against teams in
H;.

. If y < 3, then every teame R wins all matches against teams iy and
loses its matches againdt(i). If y > 3, then every tearne Rwins |H,| — 1
matches against teamslify and its remaining match inl, plus the matches
against the teams il (i) end in a draw. In both casédoses its matches
against teams i\ H(i).

. Every team € H, loses all matches against teamdHp Matches between
teams inH; all end in a draw.

. Matches between teams iy end in a draw.

This wayt, has no remaining matches agg= s, = |V| + y|H,|. Further-
more we have made sure tltat= § — s holds for all teamg; € V.
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Because all teams iRl; U H, have no remaining matches, they will corre-
spond with isolated nodes if they are adde®tdSo we have a set of remain-
ing matchesM in 1-1 correspondence with edgesEnHowever, we still have
to check that teams iRl; U H, do not have a final score greater thign For
alli € H; we deduce that its score

s <|Hil+y+y+(V[-Dy=[H|+y+y|V]
and for alli € H, we have
S < |Ha| + y[Hi| + |V].

It is easy to see that both upper bounds will be smaller tWar- y|H,| = &
provided thatH, is sufficiently large. Hence we have constructed a competi-
tion with a state N, s, M) such that G, c) is obtained from this state (omitting
the isolated nodes).

Above we have assumed that each team plays exactly one time against all
other teams. For a class of competitions with orger 1 we letp — 1 matches
between every pair of teams end in a draw. Then we use the same construction
as in the case = 1. O

Theorem 5.2 implies that for soccer competitions with the current FIFA rule
(0, 1, 3) and order for instance 2 or 4 it has indeed becawie-complete to
decide whether at a given stage a certain soccer team wins the competition.

5.2.3 Related problems

Examining the proof of Theorem 5.1 we see that the network model we used
for solving cases (ii) and (iii) of our main theorem does not apply for cases in
which the rule &, 8, v) has the property that < 8 < y anda + y # 28. Take

for instance the ruléx, B, v) = (0, 1, 3). If we increase the upper capacities

to 3 on all arcs fronV to E and fromE to t in the network of Figure 5.3, then

a feasible flow does no longer necessarily represent a solution of our instance.
(A total flow of 2 entering a node = (i, j) € E distributed as 2 : 0 on the
two entering arcs does not correspond to a win/loss or a draw.) If we "repair”
this by introducing a "capacity gap” ]B[ on all arcs fromV to E we get

a flow problem with capacity gaps, which again nicely describes our sports
competition problem. So as a consequence of our result, the following class
of problems is alsavV'’P-complete.
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Definition 5.3 FLOWS WITH CAPACITY GAPS (FCG)

Instance A digraph D = (V, A) with sources and sinkt and for each arc
a € Atwo disjoint capacity intervalk, (a) = [c1(a), c(a)] and 1x(a) =
[cs(@), ca(@)] (ci(@) €Z,i=1,...,4),

Question Does a (integral¥-t flow x € ZA exist with x(a) € 11(a) U 1»(a)
(ae A? O

Corollary 5.1 FCG isN'P-complete. O

As to sports competitions, we would like to remark that also other questions
can be treated in the same way. For example "Is there a chance that team
to ends up with the lowest final score?” turns out to be of exactly the same
complexity as SC: Assume that has a current total scog and loses all
remaining matches. This results in a current total ssofer all other teams

ti # to. The question is now whether the teatng to can finish the remaining
matches in such a way that eaglcollectsat least ¢ := 5y — 5 additional
score points. Again we model this by a multigrah= (V, E) whose nodes
correspond to teants# t; and edges are in 1-1 correspondence with remain-
ing matches. Each nodec V has a (lower) capacitg, € R. Our “reverse”
sports competition problem (RSC) can now be formulated as follows.

Definition 5.4 REVERSE SPORTS COMPETITION (RS&(8, v))
Instance A multigraphG = (V, E) and node capacitiesc RV.
Question CanG be partially oriented such that for each nodeV:
ad~ (i) + B8C3) + y8T (i) >¢ ? (5.2)
O

It is easy to see that fare V, (5.2) is equivalent to
(y = B)3°() + (y — )8~ (i) < y8(i) — G

Hence an instano@s, c¢) of RSC, B, y) corresponds to an instan@g, y§ —
c) of SC(Q y — B, y — @), and the corollary below immediately follows from
Theorem 5.1.

Corollary 5.2 RSC¢, 8, y) is polynomially solvable in each of the following
three cases:

(i) a=p8
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(i) p=vy
(i) a+y=2p.
In all other cases the problem j§P-complete. O

Questions such as "Is there a chance thands up being one of the three
teams that have the three lowest final scores?” can also be treated in a similar
way. Again, assume th# has a current total scosg and loses all remaining
matches. Choose two tearfist; # to, and lett; andt; lose their remaining
matches against teamis (k # 0,1, j). (Choose, if necessary, an arbitrary
outcome for the matches betwegrandt;.) These outcomes result in final
total scores, = 59, § and$§;, and current total scores; for all other teams

t« (kK #£ 0,1, j). If it is possible that the teantg (k £ 0,1, j) can finish the
remaining matches in such a way that egchollects at leasty ;= § —
additional score points, thegican indeed end up being one of the three lowest
teams. If this is not possible for any pairt;, thenty can never end up being
one of the three lowest teams. So one has to solve at &fiN$t|N| — 1)
problem instances in RS&(B, y). Hence also this question is of the same
complexity as SC.

5.3 Competition games

Consider a competition gam&l( v) obtained from a sports competition with
state (N, s, M) and rule &, g, y). Clearly computing the value(N) comes
down to solve the corresponding instané& c) of SC, g, ). Below we

give an algorithm for computing the other valuesS) (S# N). Denote

the set of remaining matches of teanby M;. For SC N let G5 = (V, E)

be the multigraph whose nodes correspond with the teanssaind whose
edges are in 1-1 correspondence with the remaining matches between teams
in S. In step (1) of the algorithm we assume that, after bribtagyill win

its remaining matches against teamssirHowever, in our modeth will only

bribe a coalitionSif it has an absolute guarantee on winning the competition.
Because there is a probability thigtloses its matches iM against teams
outsideS, we reward these kind of matches only withpoints resulting in

a lower bounds, on its final total score. Obviously there is no guarantee on
winning, if it is possible for a team outsideto achieve a higher final score
than$. If this situation cannot occur, we proceed with step (4). Recall that
we assume that both teams have to be involved if the end result of a match
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must be set to a draw and that in case of a win/loss match only the losing
team has to be bribed. Under this assumption we let every te&htose its
remaining matches against teams outssdé hen it remains to check if the
corresponding instance of S& (8, y) has a solution or not.

Algorithm COMP :
(1) Compute the final total scoig for tg
% = S + «of{me Mg|m= (to, tj) with t; ¢ S}|

+ y|[{me Mo | m= (to, ti) with tj € S}|.

(2) Compute the highest final scog¢hat a team; ¢ Smight achieve
S:=max{s + y|Mi| | t; ¢ S}.

(3) IF & < STHEN outputv(S) = 0 and STOP.

(4) Adjust the current scorg for each teant; € S

s '=s+al{me M| m= &, t) withtj € N\S}| (4 €9).

(5) Compute the amount; of additional score points that each team
ti € Smay collect by

Ci=%—-s edS.
(6) Solve the instanced®, ¢) of SC, 8, y).

(7) IF the answer for GS, ¢) is “yes” THEN outputv(S) := v* OTH-
ERWISE outputy(S) := 0. STOP.

The computational complexity of the algorithm depends on the complexity of
solving an instance of S@(g, y). COMP is a polynomial time algorithm if
and only if SC§, B, y) is polynomially solvable.

Let N* denote the set oindispensable teamsvhich contains all teams that
have to be included in any coalitidhthat is bribed byty. Because obviously
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v(S) <v(T)forall SC T C N, we have

N*:={i € N | v(N\i) = 0}.
Note thatN* can be computed in polynomial time if the corresponding sports
competition problem S& g, y) is polynomially solvable.

The following result gives an easy characterization of the core of a competi-
tion game.

Theorem 5.3 Let (N, v) be a competition game with(N) = v*. If N* is
empty, then core(Nv) is empty. Otherwise

core(N, v) = {x € I (N, v) | X(N*) = v"}.

Proof: First supposeN* = (). Thenv(N\i) = v* foralli € N. Soifx € RN
were in the core, then

[NJ™ < 3 X(N\i) = (IN| = X(N),
ieN
implying x(N) > v*, a contradiction.

SupposeN* # (). Thenv(S) = 0 if N*\ Sis nonempty. Hence any positive
allocationx € RN with x(N*) = v* is a core vector.

Now supposex € corg N, v). Thenx > 0 andx(N) = v*. If N* = N we
are finished. Supposet N*. Then we deduce from(N\i) > v(N\i) = v*,
X > 0 andx(N) = v* thatx; = 0. O

In Example 5.1v(N\i) = v* for all i € N. HenceN* and corel, v) are
empty. The example below shows a competition game with a nonempty core.

Example 5.3 Consider a competition with ruléd, 1, 2) and stateN, s, M)
given by the tables below.

| teams| scores| remaining
to 10 matches
t1 13 to— 1t
to 6 to—13
t3 5 t1 — 1ty
ts 0
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The competition gaméN, v) is determined byN = {t;, t,, t3, t4} and v :
2N — R, given by

. v* if S= {tl, to, tg} orS=N
v(S = { 0 otherwise

ThenN* = {ty, t,, t3} and
corgN, v) = {Xx € RN | Xy + Xo + X3 = v*, X4 = 0 andx > O}.
0

In the next theorem we prove that the Shapley value of a competition game
(N, v) can easily be computedt only has to bribe the indispensable teams.

Theorem 5.4 Let (N, v) be a competition game with*N£ (). If v(N*) = v*,
then the Shapley valugis given by

v*
—— jifi € N*
$i(N,v) = |N*|
0 otherwise
Proof: (i) Supposa, j € N*. Then
v(SUI)=0=v(SUj) forall SC N\{i, j}.

By Theorem 2.4 we know that the Shapley value satiSiws Now define a
permutationzr : N — N as follows:

j ifk=i
(k) = i ifk=]
k otherwise

It follows thatv™(S) = v(S) for all SC N. Then, according t&ym
#i(N,v) =¢;(N,v) foralli, j € N*. (5.3)

Also, by Theorem 2.4 the Shapley value satishesn Supposé ¢ N*. First
note thatv(N*) = v* andv(T) < v(S) forall T C Simply thatv(S) = v* if

N* C S. Thenv(S) — v(S\k) = 0= v(k) forall SC N. Sokis a dummy in
(N, v). By propertyDumwe have

ék(N,v) =0 forallk € N\ N*. (5.4)
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(5.3) and (5.4) imply that

ifi € N*

¢i(N,v) = [N
0 otherwise

O

Note that the Shapley value as defined above is a core allocation. However,
the following example makes clear that in cag&l*) = 0 the Shapley value
is not necessarily of this form.

Example 5.4 We consider a competition with ru(@, 1, 2) and statéN, s, M)
given by the tables below.

| teams| scores| remaining
to 8 matches

t1 7 to—13

to 7 to— 1ty

t3 5 t1—13

ts 1 ts—1;

t, — t3

ts — 1,

Then the competition gamé&l( v) is defined by set of teamé = {t;, t,, t3, t4}
and characteristic functiomgiven by

(S) . v* if t3 andt4 in Sor S= {tl, o, tg}
v ~ | 0 otherwise

HenceN* = {t3}. Sincev(t3) = 0, Theorem 5.4 cannot be applied. Comput-
ing the Shapley value yields = ¢, = 2 v*, ¢3 = Lv* andgs = Sv*. Note
that the Shapley value of this competition game is not a core allocatian.

Also with respect to the problems mentioned in the previous section (e.g.,
RSC) we can define similar competition games, wtligtées to bribe some
other teams. Furthermore, our model can be extended by letting the value
v(S) depend on the (size of) coalitid or by including some other teams
that also want to win the competition by means of bribing.
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Summary

In game theory situations of conflict are modeled and analyzed. In such a sit-
uation two or more individuals (the players) with similar or different interests
are taking actions or making decisions. In cooperative game theory players
may form coalitions in order to optimize their profits (or costs).

It is often reasonable to assume that the players decide to work all together.
Then the question arises how to split up the joint profit or cost. A solution
concept suggests for each game a set of possible pay-offs (allocations).

The usefulness of a solution concept is not only determined by its modeling
adequacy but also by its computational complexity. In this thesis we study
the complexity of several solution concepts with respect to various classes of
cooperative games. In all games we consider, the cost or profit is computed
as the optimal value of some discrete optimization problem. More precisely,
a game is defined by a graph with an associated node and/or edge weight-
ing. The profit or cost of a coalition is determined as the value of a discrete
optimization problem on this graph.

After some preliminaries in Chapter 1, in Chapter 2 we discuss a number of
solution concepts for cooperative games, in particular the core and the nu-
cleolus. We generalize these two concepts to obtairf theast core and the
f-nucleolus (special cases: the nucleon and the per-capita nucleolus).

Chapter 3 concentrates on minimum cost spanning tree games (MCST-games).
In an MCST-game the players are represented by nodes in a complete graph
and the cost of a coalition is equal to the weight of the corresponding mini-
mum spanning tree. MCST-games have nonempty core, and certain core al-
locations can be computed in polynomial time. However, for certain reasons
these core allocations may not be acceptable. We therefore studyldaest

core of a minimum cost spanning tree game for various priority functions

By a reduction from minimum cover problems we prove that for a large class
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142 Summary

of priority functions computing an allocation in thieleast core of a general
MCST-game isV’P-hard. As a consequence also computfrgucleoli, such

as the nucleolus, the nucleon and the per-capita nucleolus of MCST-games, is
in general\/P-hard.

Chapter 4 deals with matching games. In a matching game the players are
represented by nodes in a graph and the profit of a coalition is equal to the
weight of the corresponding maximum matching. In particular, we study car-
dinality matching games and a generalization thereof (node matching games).
We first present a simple characterization of the least core. We then use this
description to construct a polynomial time algorithm for computing the nucle-
olus of these games. The case of general (weighted) matching games remains
open.

In Chapter 5 we study complexity aspects of sports competitions like national
football leagues and related games. In such a competition various teams play
matches against each other in pairs according to a previously determined
schedule. The central problem is the so-called elimination problem, i.e., to
determine at a given intermediate state of the competition whether a particu-
lar team still has a chance of winning the competition. Our main result states
that the new FIFA-rules (3 : 0 for a win) have complicated this problem con-
siderably. We completely characterize the complexity of this problem, and
relate it to the core complexity of a corresponding game, in which a team tries
to bribe some other teams in order to win the competition.



Samenvatting

Speltheorie modelleert en analyseert conflictsituaties, waarin twee of meer in-
dividuen (de spelers) optreden, die gelijke of verschillende belangen hebben.
In codperatieve speltheorie kunnen spelers coalities vormen om hun winst (of
kosten) te optimaliseren.

Het is vaak redelijk om aan te nemen, dat alle spelers met elkaar gaan samen-
werken. Dan doet zich de vraag voor, hoe de gezamenlijke winst of kosten
verdeeld moeten worden. Een oplossingsconcept geeft voor elk spel een
verzameling mogelijke uitbetalingen (allocaties).

De bruikbaarheid van een oplossingsconcept wordt niet alleen bepaald door
de mate waarop het concept aansluit op de gemodelleerde situatie, maar ook
door de complexiteit van het berekenen van een allocatie volgens dat concept.

In dit proefschrift bestuderen we de complexiteit van verscheidene oplos-
singsconcepten met betrekking tot verschillende klassen \apecatieve spe-

len. In alle bestudeerde spelen worden de kosten (of de winst) berekend
als de optimale waarde van een zeker discreet optimaliseringsprobleem. We
definiéren een spel door middel van een graaf met gewichten op de punten
en/of lijnen. De winst of de kosten van een coalitie wordt dan bepaald als de
waarde van een discreet optimaliseringsprobleem op deze graaf.

Na een inleiding in Hoofdstuk 1 bespreken we in Hoofdstuk 2 een aantal
oplossingsconcepten voor@oeratieve spelen. In het bijzonder besteden we
aandacht aan de nucleolus en de core. We generaliseren deze twee con-
cepten en verkrijgen op die manier fideast core en dé-nucleolus (speciale
gevallen: de nucleon en de per-capita nucleolus).

Hoofdstuk 3 behandelt minimum opspannende boomspelen (MOB-spelen).

In een MOB-spel worden de spelers gerepresenteerd als punten in een com-
plete graaf en de kosten van een coalitie worden gelijkgesteld aan het gewicht
van de overeenkomstige minimum opspannende boom. MOB-spelen hebben
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een niet-lege core en bepaalde core-allocaties kunnen in polynomiale tijd
berekend worden. Echter deze core-allocaties zijn niet onder alle omstandighe-
den acceptabel. Daarom bestuderen wef deast core van een MOB-spel
voor verscheidene prioriteitsfunctids We bewijzen dat het berekenen van
een allocatie in de -least core van een algemeen MOB-sp&P-moeilijk is

voor een grote klasse van prioriteitsfuncties. Uit dit resultaat volgt dat ook
het berekenen vari-nucleoli, zoals de nucleolus, nucleon en de per-capita
nucleolus van MOB-spelerly P-moeilijk is.

In Hoofdstuk 4 behandelen we de matching-spelen. In een matching-spel wor-
den de spelers gerepresenteerd als knopen in een graaf en de winst van een
coalitie wordt gelijkgesteld aan het gewicht van de overeenkomstige maxi-
male matching. We bestuderen in het bijzonder cardinaliteitsmatching-spelen
en een generalisatie hiervan (puntmatching-spelen). Met behulp van een een-
voudige karakterisering van de least core construeren we eereffaijo-

ritme voor het berekenen van de nucleolus van deze spelen. Het algemene
geval van (gewogen) matching spelen blijft een open probleem.

In Hoofdstuk 5 gaan we in op complexiteitsaspecten van sportcompetities
zoals de nationale voetbalcompetities. In een dergelijke competitie spelen
verscheidene teams wedstrijden tegen elkaar volgens een van te voren vast-
gelegd wedstrijdschema. We bestuderen het zogenaamde eliminatieprobleem,
d.w.z., het bepalen of in een gegeven tussenstand een zeker team nog steeds
een kans maakt op het winnen van de competitie. Ons resultaat houdt in,
dat de nieuwe FIFA-regeles (3 punten voor een overwinning) dit probleem
aanzienlijk vermoeilijkt hebben. We geven een volledige karakterisering van
de complexiteit van dit probleem. Ook brengen we het in verband met de
complexiteit van het berekenen van een core-allocatie in een zogenaamd com-
petitiespel, waarin een team probeert de andere teams om te kopen om zo de
competitie te winnen.
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